S(IT Institut fur Technische Informatik
| Chair for Embedded Systems - Prof. Dr. J. Henkel

Vorlesung im SS 2016

Reconfigurable and
Adaptive Systems (RAS)

Marvin Damschen, Lars Bauer, Jorg Henkel

ﬂ(IT Institut fur Technische Informatik
| Chair for Embedded Systems - Prof. Dr. J. Henkel

Reconfigurable and
Adaptive Systems (RAS)

7. Adaptive Reconfigurable Processors

RAS Topic Overview

M. Damschen, KIT, 2071'76' o

« RISPP

« WARP

* Dynamic Instruction
Merging (DIM)

* Further relevant

architectures /
domains

ﬂ(IT Institut fur Technische Informatik
| Chair for Embedded Systems - Prof. Dr. J. Henkel

/.1 RISPP: Rotating
Instruction Set
Processing Platform

Overview

» Developed at CES, KIT

» Tightly-coupled fine—-grained reconfigurable
fabric

» Introduces and implements modular Sls
> Provide different performance/area trade-offs at runtime

» Realizes high runtime adaptivity, i.e. a runtime
system decides which reconfigurations shall be
performed and when they shall be performed

L KIT, 2016 -5 -

RISPP Recall

Some parts were already introduced as case-study in
previous lectures

Instruction Format (up to 4 read and 2 write registers,
immediate values, 10-bit virtual opcode)

Using the core ISA (cISA) to implement Sls when their
reconfiguration is not completed yet (trap handler)

Special Instructions have access to main memory and to a
fast on-chip scratch-pad memory

> Using two independent 128-bit ports

> Pipeline stalls when Sl executes in hardware

Dynamic Prefetching (called ‘Forecasting’) using weighted
error-back propagation

en, KIT, 2016

RISPP HW Architecture Overview
Legend: 128?n—ch%Wmory /\System

Added ~— | Bus

arts 7~
- JL I

Memory ,)
. // // V’
Arbiter 32 32
IA\

— 1 Data Cache
/

P £ y[128 /1128 Memory
-
— |V|E 4
RIR G <> VGA
Q ==
.= EXE - =) S®
D- 0 C
) e 3 <= ICAP
—~ |ID
o

o [N N]

IF \A}:>

:E

M. Damschen, KIT, 2016 -7 -

Analysis of Special Instruction
Execution

S » Partition the reconfi-
%— gurable fabric into so-
%_ﬂ called SI Containers

E - aka ‘Reconfigurable
j_ Functional Unit’

O
7 » An SI may be loaded
r . Core Plpellne into any free Container
Legend: (scaled down):) y

Reconfigu- Special Instruction » Problems:
_rable area: D Container (SIC): -J .

- Relatively long reconfi-
guration time

COI’I’ESI_DOI’IdS_tO > Limited Resource Sharing
OneChip, Chimaera, - Fragmentation (not the
Proteus, entire available space

may be usable)

- M. Damschen, KIT, 2016 - 8-

Analysis of Special Instruction

. y
ExeCUtlon (Cont d) All 31,977 Sl executions

N

completed
_8 — No cISA exec. % /\
c 30 :
- With cISA exec.
N4 s
- — With cISA exec. & smaller Sls
S0 \
= < 50 — With cISA exec. & upgrades
El=
Ev 15 /\
S W :
55 10 RISPP’s
¢<E 'g modular Sls
O
()
X
Ll

S

02 04 06 08 10 12 14 16 18 20
Execution Time [Million cycles] s sstosa

-

hen, KIT, 2016 -9-

Fundamental Processor Extension:
Atom / Molecule Model

» Definition Atom:

- A computational data path

- Smallest block that can be reconfigured (‘atomic’ in that
sense)

» Example: Transform Atom

f

DCT

<<1 : +\

() (>>1
\]_/

>> 1

WA

Fundamental Processor Extension:
Atom / Molecule Model

» Definition Special Instruction: » Example: Sum of Absolute
° An assembly instruction Transformed Differences (SATD)
- Dataflow graph of Atoms
(INPUT: DCTTO H:T=0 DCTTO H:T=1 OUTPUT:
0— J — 7 HiHER 7 :
// // +
o X i 1 [g sttt
O— N BRRRRAR / <+>—
o -;%éééézézézézéJ At H/
o //
QSub Repack Transform S (S Ot

Absolute Values)

Fundamental Processor Extension:
Atom / Molecule Model

» Definition Molecule: reconfigured) Atoms
- Implementation of an Sl > Similar to HLS scheduling after
- Using the available (i.e. at that time allocating a certain number of Atoms
Repack (2 instances) //; Transform (2 instances) SAV (2 instances)
10 11 12 13 14 15 16 17

.......... »
.......... »

Fundamental Processor Extension:
Atom / Molecule Model

SPECIAL IN-
STRUCTIONS
(Sls)

(an Sl can be
implemented
by any of its
Molecules)

ATOMS

(the numbers
denote: #Atom-
instances requi-

Rﬁgl;%ugl)s m m (Atom 3) (Atom 4) (Atom 5) (Atom 6)

» For each S| there are different - Atoms can be shared among different

implementations (Molecules) Molecules and Sis .
o There is one Molecule that does not g Implementatlon of a part|CUIar S|

need any Atom (Software can be gradually upgraded by
Implementation with core-ISA: cISA) loading more Atoms

en, KIT, 2016 - 13-

Difference to SI Containers

(CLre‘Pileir{e W

S| Containers Atom Containers

- \ — = ~
/) v

27 |
. ;m_
it 5 "

v

S

) o

-

_—

» Multiple SIs may share common Atoms
» There is no predetermined maximum of supported Sls

» But: it is not possible/easy to execute two Sls at the same time

(as they are no longer independent)

> Not necessarily a problem, see Molen (single controller unit) and
OneChip (memory coherency problems)

» Sls can be upgraded (step-by-step by loading more Atoms)

M. Damschen, KIT, 2016 -14 -

Adaptivity Through Dynamic

40

Execution Time [Cycles]
- N N w w
(@) o (@) o (@)

RN
o

Performance vs. Area Trade-off

S| Molecules: Performance vs. Reconfigurable Resources

Area requjrements
Atoms]

Q [# loade
\ - |Pred VDC 16x16 (I-MB) max
\ —-— |Pred HDC 16x16 (I-MB)
\ —- MC Hz 4 (P-MB)

1 2 3 4 5 6 7 8 9 10 11
Hardware Resources [Atom Containers]

12

M. Damschen, KIT, 2016

10

- 15 -

Summary Modular Sls

» Concept improves the efficiency and flexibility
- Atom sharing
- Reduced fragmentation
- Reduced reconfiguration overhead (due to Sl upgrading)
» Decision how many Atom Containers shall be
spend for which Sl can be adapted at runtime

» However, this adaptivity demands a runtime
system that determines the decision and that
implies overhead (to execute it)

M. Damschen, KIT, 2016

- 16 -

Runtime System: Simplified Overview

@:(

Instruction

Memory

w

Core Pipeline

Instruction

A
Status / Control

{}

[Reconfigurable HWJ

A

A

A

-

o)

y

Run-time

Y
4_1 Execution Reconf.
Control Sequenc

~

e Replacing

SySte m CSeIe:tion)
*@onitorin@—»{l’redictio@

-17 -

Runtime System: Simplified
Overview (cont’d)

» Decode: detects SIs and Forecasts (for prefetching) and sends
them to the execution controls (only Sls) and Monitoring (Sls and
Forecasts)

» Execution Control: executes Sls by determining their fastest
currently available Molecule (state is maintained in a look-up
table) and triggers the hardware execution (using the Atoms) or
the software emulation (using the trap handler)

» Monitoring: Counts the executions for each SI

» Prediction: Fine-tunes the Forecasts (recall: dynamic prefetching;
see below) and resets the monitoring values

o) o

) 5 e -

EE [»

P: Prefetching Point
ME: Motion Estimation

EE: Encoding Engine
LF: Loop Filter

en, KIT, 2016

- 18 -

Runtime System: Simplified
Overview (cont’d)

» Selection: Select Molecules to implement the
forecasted Sls

» Reconfiguration Sequence Scheduling:

Determine t
the Atoms t
selected Mo

ne reconfiguration sequence of
nat are required to implement the

ecules

» Replacing: Determines, which currently
configured Atom shall be replaced by a new
Atom that is scheduled to be reconfigured

MR KIT, 2016

-19 -

Formal Atom/Molecule Model

Instances of Atom A; _
A » Representing the

S — s (1 4) Molecules as a

v/ L 5 s _s0 5 vector of Atoms
|O‘ Qf—y:z)tjf) o The example only

5
59 shows 2 Atom Types
|y‘ - (A, and A,), thus each
vector has 2 entries;

|
- - - |
3 /ﬁ_é‘::%mp:(l’ 2) : in general: N"
:r\ (,2) » Basic operators

5
‘ —7 - How many Atoms are
heeded for a Molecule

> Which Atoms have
two Molecules in
common

> Which Atoms are
[| > needed to fulfill the
4 5 6 demands of two

Molecul
Instances of Atom A OIeCHies

@ T

-20 -

Formal Atom/Molecule Model
(cont’d)

Instances of Atom A4 # Instances of Atom A;
A A
5 — 5 —
p=(4, 4) p=(4,4)
4 — 4 — \V
5, > p=(0, 3) 4
3 3 Q<—/
{
2 4 2 —/
1 1 - omitted ‘neﬂ----o
tive’ upgrade 5, = (6, 1
> _ # Instances ~ # Instances
T | | > | | | | | | >
1 5 3 of Atom A 1 5 3 . 5 5 of Atom A

» Upgrade operator o> p:

- Given the Atoms of o, which additional Atoms are needed
to implement p

imiIarIy, the without operator: p/ o:=o0o> p

chen, KIT, 2016 =21 -

Formal Atom/Molecule Model
(cont’d)

) O

Indicates the
" relation ‘<

D)

| | | >
3 4 5 6
Instances of Atom Ag

» A relation can be
used to compare
Molecules with
each other

- Not all Molecules
can be compared,
e.g. 0, and o

» The relation has

a infimum and a

supremum

o Actually it is a
complete lattice
(vollstandiger
Verband)

22—

Runtime System: Simplified Overview

I
Q‘:,[Core Pipeline
Inl\\'/:igr%(gi’?/n StatuAs / ControIU {}
—_ [Reconfigurable HWJ
nstruction
A A A
q v v)
(oecode i S) (oo > (Renicing)
Desis can Run-time T.
[BSHOSb] System Csele:t'°">

#@onitorin@—»{l’redictio@

L KIT, 2016 - 23 -

Molecule Selection: Why at runtime?

Instances of Atom A;

‘; —_
6,: possible %0

6 - Molecules for Sl4 o
45 a? aﬂ a‘é}

5 Q @) @) Q

.. Highlighting the po-
: tential Molecule Selec-
“%.._ | tions for 7 available

k Atom Containers

=S
Fin Wyl

0
3 §
2 _ =
1 —

» # Instances of
Atom Ay

L 3*@91 bepl Q.S

M. Damschen, KIT, 2016

—24 -

Formalized Instruction Set
Selection

» Input to the Selection: requested Sls and their
different Molecules (in the following S/, will
denote one of the requested Sls)

M. Damschen, KIT, 2016

- 25 -

Complexity of the runtime
Instruction Set Selection

» Similarities to the well-known NP-hard Knapsack Problem

» Given:

> A Knapsack with the
capacity C

- Elements £={e;} with weight
w(e;) and profit p(e;)

» Task: choose (multiple)
elements such that the
accumulated capacity is
not violated and the
accumulated benefit is

maximal

- Weight and benefit are constants
that depend on the capacity (e.q.
volume vs. weight) and the
situation (e.g. for camping a tent
might be more beneficial than a
gold bar), respectively

- 26 -

Complexity of the runtime
Instruction Set Selection (cont’d)

Al » Differences to Knapsack: the

weight of a Molecule (i.e. the

number of required Atoms to

— |;| n H 2 |;+ ;| implement it) is not constant

. > |t depends on the Molecules that

3+ 4 # 5 are selected additionally and on
their Atom requirements (due to

N -~ Atom sharing between different

n s m* Y Sls)

» Instead of accumulating the
individual weights we have to
combine all Implementations
and determine their total
weight

» Question: still NP-hard?

-27 -

NP-hard Selection:
Concept of proof

1. Take an arbitrary input of a Knapsack problem, i.e.
capacity C, Elements e; with w(e,) and p(e)

2. Apply a polynomial-time transformation on the
input such that the transformed input describes a
corresponding Selection problem

3. Solve the transformed input with an optimal solver
for the Selection problem such that the result can
be transformed back into the optimal solution for
the original Knapsack problem

4. Then: ‘Instruction-Set Selection’ is at least as hard
as ‘Knapsack’, i.e. Knapsack < Instruction Set
Selection

, KIT, 2016

- 28 -

NP-hard Selection: Idea of proof

» The capacity of the Knapsack determines the number of
Atom Containers, i.e. N-=C

» For each Knapsack element e; we create one Atom Type A,

» For each Knapsack element e; we create S[‘,:{;‘ o |
one Special Instr. 5/;with 2 Molecules P T eIS Ay LW

» The two Molecules represent the decision | x; .5,:=(0, ..., 0)
whether or not the element e; should be ‘* _ 0
packed into the knapsack Xiersa|=
> Not Packed: Molecule uses no Atoms and has P(;i CISA):: 0

zero profit =

—

- Packed: Molecule uses Atom Type X Hw = (0, .0, W(e,), 0, ..., o)

A in a quantity that corresponds
to the weight of the element; the
Molecule profit corresponds to .
the element profit |xi_Hw|= w(e,)

p(xi_HW):: p(ei)
en, KIT, 2016 - 29 -

-

—

#Instances of 4,

NP-hard Selection: Idea of proof
(cont’d)

» This Sl structure avoids ‘Atom sharing’ (the main difference
between Knapsack and Selection), as each Atom Type is only
used by one Molecule

» The solver for the Instruction Set Selection will select one
Molecule (cISA or Hardware) for each Sl (i.e. element)

- Selecting the cISA Molecule (with 0 profit and 0 weight) corresponds to not
packing the corresponding element into the Knapsack

» Respecting the capacity constraints for the Atom Containers
corresponds to respecting the capacity for the Knapsack

» Maximizing the profit for the Sls corresponds to maximizing the
profit for the elements

—->The optimal solution for the Instruction Set Selection
corresponds to the optimal solution for the Knapsack

Instruction Set Selection is NP-hard

-30 -

Classical Greedy Implementation

» Instruction Set Selection needs to execute at runtime
> Limited resources, e.g. memory and computing time

» Typical Heuristic for Knapsack problems: Greedy
Algorithm

1.
2.
3.

4.

Calculate a benefit for each element (profit per weight)
Sort the benefits in a descending order

Initialize the Knapsack to be empty and its currently available
space to its full initial capacity

Iterate over all sorted elements (starting with the highest

benefit):

IF the element fits into the Knapsack (considering the
still available space in it)

THEN greedily add it to the Knapsack and update its still

available space
ELSE skip it (i.e. not selected) and continue with the next

element

en, KIT, 2016

- 31 -

Greedy Implementation:
Problems and Modifications

» This greedy approach cannot be directly used for
Instruction Set Selection
> Might choose multiple Molecules per SI

> Presorting the Molecules does not work, because the weight (i.e.

number of additionally required Atoms) changes, depending on
which Molecules were previously selected (i.e. which Atoms are
already selected)

» Modifications are required to use a greedy approach

o After a Molecule was selected we remove the further Molecules
from the same SI

> Instead of presorting we have to recalculate the profit

- Additionally, instead of using a ‘benefit’ (i.e. profit per weight) we

can directly use our profit values, as they already contain the
reconfiguration time (and thus indirectly the size in form of the
additionally required Atoms) as parameter

en, KIT, 2016

-32 -

Specialized Greedy Implementation

» At first, we remove all cISA Molecules: Instead of explicitly
selecting them using the greedy algorithm they are afterwards
added for each Sl for which no hardware Molecule was selected

» Iterate in a loop over all Molecule candidates, calculate their
profit, and remember the Molecule with the highest profit

- Whenever a Molecule is too big (i.e. there are insufficient Atom
Containers left to reconfigure its additionally required Atoms) then
remove it from the candidate list

» Select the best Molecule Candidate and clean the remaining

candidate list, i.e. remove those Molecules that implement the
same S|

» Iterate, till the candidate list is empty

hen, KIT, 2016 - 33 -

Greedy Implementation:
Complexity

» Greedy Algorithm for Knapsack:
> n := Total number of Molecules for all requested Sls

o

Computational complexity: O(n x log n) due to sorting

- Additional memory: O(n) for storing the sorting result

» Greedy Algorithm for Instruction Set Selection:

o

Computational complexity: O(n?)

(in extreme case each S| has exactly 1 hardware Molecule and all
of them together fit into the capacity

- In each of the O(n) iterations the best Molecule is determined in
O(n) and 1 Molecule is removed)

Additional memory: O(1) (to remember the best Molecule)

Advantage: After O(n) iterations the first Molecule is selected and
reconfiguration may start. While reconfiguration is running, the
next Molecules can be selected. So, even though the
computational complexity is higher, the reaction time is shorter.

en, KIT, 2016 - 34 -

Optimization Goal

» Constraints describe a ‘valid’ selection;
what should be considered for a ‘good’ selection?

» Execution frequency r of S/, (more often executed Sls
are more ‘important’)

» Performance improvement of a Molecule

—

in comparison to the cISA performance| .getLatency()

- Note: x,, denotes the j/# Molecule from 5/,

— x,.8etLatency()

» Reconfiguration time of the Molecules
- Considering ‘how long’ the reconfiguration lasts and ‘when’
the Sl is needed (i.e. executed) the first time
» Potentially more parameters, but the above para-
meters turned out to be the most important ones

L KIT, 2016 -35-

Optimization Goal (cont’d)

(/x,- C,SA.getLatenCy()\ \
Lo =
- | — x;.8etLatency())
P (xij) = f; - ~
(treconf (xij)_ \
R -max| O, .

K tfirstExec (xl]getS]()))

» Selection factors L and R are used to scale the
parameters

o L. Latency Improvement
> R. Too long reconfiguration time

- 36 -

Comparing Greedy vs. Optimal

Capacity: _
5 Atom Container Optl

300 e
270 K
240 ">J.
210 |®)
180 =3
150
—/ 120 g
90 =
60 p
30 2
B g
f 00
¥,
.\((\3
Facto,
ProvEm
» For many parameter pairs, Greedy finds the same solution
» In some (not relevant) cases, Greedy finds a solution that leads to
a faster execution time - Note: optimally solving Selection does
not necessarily lead to the fastest execution time (e.g. due to sub-
optimal prediction/forecasting/scheduling/replacement etc.)
- 37 -

M. Damschen, KIT, 2016

Runtime System: Simplified Overview

@:(

Instruction
Memory

w

Details can
be found in
[BSKHO8]

Core Pipeline

Instruction

Status /

A
Control

{}

[Reconfigurable HWJ

A

A

A

-

o)

y

Y
Y Execution
- < Control

Run-time
SySte m CSeIe:tion)

equenc

> <SReconf.
f

#@onitorin@—»{l’redictio@

~

o Replacing

, KIT, 2016

- 38 -

Determining Atom loading
sequence

>

After Selection, we have a set of Molecules
that shall be reconfigured

Altogether we need a certain set of Atoms to
realize all Molecules in this set (supremum)

Initially, some Atoms may already be
available in hardware and we only need to
reconfigure the remaining Atoms

Problem: The reconfiguration is rather slow
and we have to perform one reconfiguration
after the other

Question: in which sequence shall the
reconfigurations be performed?

en, KIT, 2016

S = {x}

sup(S) = U ;

VxesS

a > sup(S)

-39 -

Determining Atom loading
sequence (cont’d)

A fastest available
A1 Upgrade candidates, i.e. # loaded Molecule
Molecules for the same S| Atoms [_ =) |)
1 — —
2 — —
3 1 -
4) —
5 X X
2 2
Ao = =

» Note: typically the starting point (here:
(0,0)) and the ending point (here: (3,3)) vary
between different Selections/Schedules

hen, KIT, 2016 - 40 -

Scheduling Molecules
FSFR: First Select First Reconfigure

Aq
A

Selected Mole- » The Selection determines the
Molecules of the Sls in a certain
sequence, i.e. more relevant Sls are

considered first

- Therefore, the Molecules of the first
selected SI should be reconfigured first

cule s, for Sl

» Drawbacks:

> Other SIs may not achieve any hardware
support for a noticeable time and therefore
become the major bottleneck

- When more Atom Containers are available
then bigger Molecules will be selected and

Upgrade Candi-

dates for Sl, the other Sls are not accelerated for a
longer time (overall exec. might become
slower)

LN
4 2 Selected Molecule s, for S,

- 471 -

Scheduling Implementations
ASF: Avoid Software First

A
A Selected Mole- » The avoid the drawbacks from
5 — cule 5, for Sl FSFR we first schedule the
s US smallest Molecule from each SI
_ FsFR 515 | .
4 — (in the Selection sequence)

- Then, each Sl has some degree of
hardware acceleration

o Afterwards we follow the FSFR
schedule

» Drawbacks:

Upgrade Candi- . still, the focus is on one Sl after the
dates for Sl, other (first for avoiding cISA
execution, afterwards for upgrading)

LN
4 2 Selected Molecule s, for S,

hen, KIT, 2016

—42 -

Scheduling Implementations
SJF: Smallest Job First

Aq .
A gelected Mole- » At first, we follow the pa’Fh from
5 — cule 5, for Sl ASF (until all cISA executions are
AWK avoided)
_Fsrr HIYS |
4 — < » Afterwards, we determine the

ASF

smallest step (i.e. number of
additionally required Atoms) to
upgrade an Sl

» Drawbacks

. < Still not (explicitly) considering how
Upgrade Candi- often an Sl is expected to execute

dates for Sl . Also not considering how much
performance benefit a certain upgrade
may provide

LN
4 2 Selected Molecule s, for S,

hen, KIT, 2016 - 43 -

Scheduling Implementations

H

EF: Highest Efficiency First

» For determining the next Molecule that shall be scheduled
consider the following parameters for a scheduling
candidate ¢ :

- How often is the corresponding Sl executed: £,
- What is the performance improvement (in cycles per execution)

compared to the currently fastest available Molecule (i.e. after the

already scheduled reconfigurations are completed)

- How many additional Atoms are required (Note: ‘additional’ should

never be zero; Molecules with O additional Atoms are removed)

» Calculating the ‘efficiency’:

(c.getSI().getFastestAvailableMole-

cules(a).getLatency() — c.getLatency()

o]

n, KIT, 2016

\

- 44 -

Scheduling Implementations
HEF: Highest Efficiency First

» Calculating the ‘efficiency’ requires a division

- Divisions require many cycles when executed in software or large
area when implemented in hardware

» Optimized calculation:

> The actual value of the ‘efficiency’ is not required, only the
Molecule with the best (biggest) efficiency needs to be determined
> Thus, only comparison between two values is required

(a b)/c > (d e)/f

| | ,|’
I | \|,<’ 1
| | Phd Y

vV,

(a b) f>(d e)-c

- Store a-b separately to reuse it for the comparisons

chen, KIT, 2016 - 45 -

Comparing the different
Scheduling schemes

500
e” T TR
S eme=rTt s\
‘\\\ ---------- . \\\
\ < g == L - - P \ .
400 - = ST
\ \ .
. \\
A - \\\\
. s~“\\
. . . ~ . ==
300 -- First Select First Reconfigure (FSFR) .~ 2 NN

Avoid Software First (ASF) \\ h
~ - Smallest Job First (SJF) \/_/\

—Highest Efficiency First (HEF)

Execution Time [Million Cycles]

N
(@)
o

L © K~ O O O «~~ N OO <« LU © M~ 0 0O O ™ (N o <

~ ¥ - Y ¥ Y - Y ™ v N AN AN N N

Amount of Reconfigurable Hardware [#Atom Containers]

mschen, KIT, 2016 - 46 -

Lines: S| Latency [Cycles] (Log Scale)

Detailed Analysis of HEF scheduler

1,000

100

10

10,000

EmDCT Execution EmMC Execution [=3SATD Execution mmSAD Execution
—DCT Latency —MC Latency —SATD Latency —SAD Latency
Continuation of Latency lines for SAD
and SATD are omitted for clarity
8 10 12 14 16 18 20 22 24

Execution Time [100K Cycles]

M. Damschen, KIT, 2016

3,000 4,000

2,000

1,000

(7g]
2
9
>
O
hV4
()
o
—
v
o
(V)]
c
(@)
-
=
O
()]
X
Ll
n
(T
o
H
7))
—
A
o

- 47 -

Runtime System: Simplified Overview

@:(

Instruction
Memory

w

Details can
be found in
[BSHO9]

Core Pipeline

Instruction

Status /

A
Control

{}

[Reconfigurable HWJ

A

A

A

-

o)

y

Y
Y Execution
- < Control

Run-time
SySte m CSeIe:tion)

equenc

> <SReconf.
f

#@onitorin@—»{l’redictio@

~

e Replacing

, KIT, 2016

- 48 -

Replacing Atoms

» Whenever all Atom Containers in the reconfigurable fabric are
utilized and a new Atom shall be reconfigured (due to Selection
and Scheduling) then an existing Atom needs to be replaced

» This Atom may be required again (as typically the different hot
spots of the application are executed in a loop)

» We should avoid replacing those Atoms that are required soon

» Optimal solution for memory pages (aka Bélady's replacement):
replace that page that is not required for the longest time
> Drawback: future knowledge required

> Actual Atom usage is hard to predict due to Atom sharing and as it
depends on the Selection

- Even if future knowledge would be available, Bélady's replacement would

not be optimal for Atom replacement. Difference: memory pages are really

‘required’ and the system has to be stalled until they are fetched; Atoms
are not required, they just speed up the computation

chen, KIT, 2016

- 49 -

Typical replacement policies

Examined

Policy Description Information

BV | east Recently Used When was it
I:{" A Most Recently Used used?
SV [east Frequently Used How often
I[JVE Most Frequently Used was it used?
FIge BN First In First Out
H|Je BN | ast In First Out

Extension of FIFO: Each Atom in the queue
has a flag that is set when it is used. When an| VWhen was
SN BR Atom shall be replaced (according the FIFO it reconfi-
o ELTLW policy) but the flag is set, it gets a second gured?

/ chance, i.e. its flag is cleared and it is moved
(ofe]s'& t0 the beginning of the FIFO queue (as if it
were new). ‘Clock’ is a different implemen-
tation of the same policy.

- M. Damschen, KIT, 2016 - 50 -

High-level H.264 video encoder flow, showing
replacement decisions for LRU & MRU

* DCT: Discrete Cosine Transformation

* SAD: Sum of Absolute Differences * HT: Hadamard Transformation
Sls: * SATD: Sum of Absolute (Hadamard-) * Intra-Frame Prediction, Motion
Transformed Differences Compensation, ...
Typical Time Budget

Yb et ~ 55% . ~ 35%

(33 ms A 30 fpS) I / 11

/
Computational Motion Estimation (ME) Encoding Engine (EE)
Kernels

Note: o _ \ Critical
« Execution time of LF is rather short - not all Atoms replaced replacement
 ME and EE share Atoms (e.g. Hadamard Transformation for SATD and HT) decision
« It is crucial to avoid replacing the Atoms demanded by ME when prefetching for LF point

Replaced Atoms when prefetching for LF | Demanded for Sls

LRU Parallel Difference Computation and Accumulation SAD, SATD
MRU Transformation SATD, DCT, HT

-51 -

M. Damschen, KIT, 2016

Example for performance-wise
impact of replacement decision

Atoms

A

SI

F

\

demands
(multiple)

has
(multiple)

Molecules

SAV: Sum of QSub Byte Hadamard
Absolute Values Packing Transformation

Hadamard-Trans- Transformation Transformation

SA,IbDS:;ﬂ?; of HT4x4: 4x4 HT2x2: 22
Hadamard Hadamard
formed Differences

(0,0,0,0)>319 cycles (0,0,0,0)>201 cycles (0,0,0,0)>67 cycles
(0,0,1,0)>261 cycles (0,0,1,0)>174 cycles (0,0,0,1)>2 cycles
(0,0,1,1)>173 cycles (0,0,1,1)>16 cycles

(0,1,1,1)>93 cycles (0,0,2,2)>11 cycles

(1,1,1,1)=>31 cycles

(1,2,2,2)>27 cycles

en, KIT, 2016 -52-

Example for performance-wise
impact of replacement decision

(0,2,1,1) <

rSATD: 93 cycles
4x4 HT:16 cycles

_2X2 HT: 2 cycles

(0,2,1,0) <

(0,1,1,1) <

" SATD: 261 cycles
4x4 HT. 174 cycles
_2x2 HT. 67 cycles

C SATD: 93 cycles
4x4 HT. 16 cycles

_2X2 HT: 2 cycles

» Depending on the replaced Atoms, all SIs might be
affected

> Some Atoms are critical for the performance and thus should not
be replaced

» This is independent of history-based matters, e.g. ‘when’

‘ en, KIT, 2016

they were reconfigured, ‘how often’ they were used etc.

- 53 -

Determining Replacement Candidates

v

Some Atoms are selected to implement Sls

s = (SO,...,Sn_l)
» Some Atoms are currently available
a = (ao,...,an_l)

» Some Atoms need to be reconfigured (prefetching selected them
but they are currently not available)
o/
» Some Atoms are replacement candidates (they are available but
prefetching did not select them)

— _ —

» Next: determine the Atom that leads to the minimum
performance degradation, accumulated over all Sls: MinDeg

imschen, KIT, 2016 - 54 -

MinDeg Algorithm: Example

SAV: Sum of QSub Byte Hadamard » Available
Absolute Values Packing | |Transformation Atoms

a:=(1,2,1,1)

» Replacement
SATD: Sum of [N a4 4] [TN A } Candidates

—_

c = (0,2,1,1)
» Candidate:
(0,0,0,0)>319 cycles (0,0,0,0)>201 cycles (0,0,0,0)>67 cycles (O,D,,(I),,O)
(0,0,1,0)>261 cycles (0,0,1,0)>174 cycles (0,0,0,1)>2 cycles
(0,0,1,1)>173 cycles (0,0,1,1)>16 cycles
(0,1,1,1)>93 cycles (0,0,2,2)>11 cycles
(1,1,1,1)>31 cycles ... (1,2,010)
(1,2,2,2)>27 cycles (0,0,0,1)>261+174+67=502 cycles
(0,0,1,0)>319+201+67=587 cycles
(0,1,0,0)> 31+ 16+ 2= 49 cycles

Absolute Hadamard Hadamard

Hadamard-Trans- :)
formed Differences Transformation Transformation

» Afterwards
available Atoms

hen, KIT, 2016 =35 -

Application

» When a rather small
reconfigurable fabric is
available, then often all
Atoms need to be
replaced (minor impact
of replacement policy)

» When a rather large
fabric is available, then
all ever-demanded
Atoms might fit to the
fabric at the same time
(minor impact of
replacement function)

» In between, MinDeg
provides the best
performance

1schen, KIT, 2016

Execution Speed

Execution Time [Million Cycles]

70

60

50

40

30

20

10

Reconfiguration Bandwidth: 10 MB/s

RN —— LIFO - - - FIFO
— LFU - - - MFU
LRU MRU

2 2nd Chance Our MinDeg

\

)

Here, MinDeg achieves up to b
1.61x speedup in comparison to
the closest competitor

Number of Atom Containers

6 8 10 12 14 16 18 20 22 24

- 56 -

Runtime System: Simplified Overview

J—
— Core Pipeline
Inﬁg%%i-?/n StatuAs / ControIU {}
—_— . [Reconfigurable HWJ
Instruction
A A A
f Y Y

Details can
be found in
[BSHO8a]

o)

Y Execution
- < Control

Run-time
SySte m CSeIe:tion)

Reconf.
Sequenc

#@onitorin@—»{l’redictio@

~

e Replacing

- 57 -

Infrastructure for Modular Sls

Bus Connector

Segmented Bus
to connect to

neighbored Bus

Loca Stora;lge

- result may be
read in next cycle

—_—]

—

Connector

xcz\

Atom

Local | Local
storage | storage

scaled

down

'

Atom-internal
computation

n, KIT, 2016

Infrastructure for Modular Sls

(cont’d)

Bus Connector 0)

Bus Connector 1

d Bus Connector 2

pa |

Container 0

Container 1

Y >\ 3N N
W 2% o »x) X
X X X
> Atom > Atom < Atom

0

(

scaled
down

5

M. Damschen, KIT, 2016

Local | Local
storage | storage

o

scaled
down

§

Container 2

¢

scaled
down

S

- 59 -

Details of non-reconfigurable
parts

» In addition to the reconfigurable Atom Containers, there are
several non-reconfigurable components connected to the bus

> Load/Store Units (LSU), Address Generation Units (AGU), and Repack (Byte-
wise rearrangement of data)

[)

@
£ .S
o 3
<5
O
\)
Legend:
Memory Co ntroller AGU:Address Generation Unit

LSU: Load/Store Unit

‘ M. Damschen, KIT, 2016 - 60 -

Details of AGU

2-D Array of data\(

00000000

DS 00000000

-DSub-array of 500000

demanded data DD'DDD:DDD
= ——

» AGU initialization

- Baseaddress, Stride, Span,
Skip
- Based on parameters of SI

\—B‘GD_DDDDC] (constants or from register
alafalafalafas e
Base Address 00000000 » 4 AGUs can be used to
Representation of describe 4 different
span=3 data in memory memory streams
_ | !

> e.g. reading from two different
arrays and writing to two

---DDQL:]QDDD.DDQDDDDD.DDDDDDDD---

stride=1 skip=6 different arrays
_ o » Each AGU pre-computes
Alternative: process the data vertical first l.’ l.’ l ‘ : ‘
L the ‘next’ and the ‘next

span=3 | skip=-15 |

~-000000000000000000000000 -

next’ address

> required to feed both LSUs at
N Stride=8 the same time (e.g. using both

\ LSUs to read only one memory
stream) -6l -

FPGA-based Prototype

......

WA WEN WER

L]
" e . e
5

M. Damschen, KIT, 2016

RISPP Prototype Floorplan

Bus Connectors and Periphery IP-Core for Memory
static Repack Atoms Video-In and Vid

Atom Containers

td

=]

. =E-. it

1 5

T e e e e
e e [t o

o I

: — = 5 = A — - = x| = . = - g o ‘
12C Peri- ICAP Bus MicroBlaze (for run-time “LSU 1 AGUs Leon?2
p'hLe:rl‘ly Controller Macros system) and Peripherals LSU O core

M. Damschen, KIT, 2016 -63 -

RISPP Simulator GUI

=Iofx

File Edit View Simulation Mavigate Playback about RISPPVis

||| 4 D B[N AN E R B ® @rc=r 7 A

Timeline I 51 delay diagram I Energy diagram I Atom containers g X}

Swap-n gueue Events 5ls Atom containers
51 executions g X
51 exec count
httwo 0
htfour 0
] d i mchzfour 0
— e B EEEREEE e
ipredvdc 1sixteen 0
satdfour (satdfour_HW_00) |§}SFOL.II’ 0
@ cyde 328681 o o satdfour 363
el I8, 300 cycles 228, 400 cycles 228,500 cycles 28, 600 cyclas latency: 24 cydes cyclas 28, 900 ;I detfour 1]
_‘I J LI 1 1 1 1 |JI i
Timeline g X
Timeline I Bookmarks I Console I
Cydle: 323596 A

schen, KIT, 2016

H.264 comparison with State-of-the-art
ASIPs

4,500

4,000 -

mm ASIP Execution Time
3,500 == RISPP Execution Time

3,000
2,500 -
2,000 A
1,500 -~
1,000 -

500 -

Execution Time [Million Cycles]

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Available Hardware [Atom Containers]

src: [BSHO8c]
M. Damschen, KIT, 2016 - 65 -

H.264 comparison with State-of-the-
art Reconfigurable Processors: Molen

3,000 3.0

B MOLEN

[RISPP

___ Speedup of RISPP in /J\/\
2,000 - Comparison to I\/Iolen/ \//
1,500 -

1,000 -

N
U1
(=}
o

2.5

N
(<)

Line: Speedup

=
(=)

500 - - 0.5

Bars: Execution Time [Million Cycles]

- 0.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Available Reconfigurable Fabric [Atom Containers]

src: [BSKHO8]
M. Damschen, KIT, 2016

- 66 -

Overall System Evaluation

viin AVg viax
H.264 Video Encoder 1.11x | 15.80x | 22.21x
SUSAN Image Processing| 1.22x 14.48x | 15.99x
SHA 6.10x 6.44x 6.45x

ADPCM Encoder 1.17x 5.00x 5.16x
JPEG Decoder 1.23x 3.31x 3.79x

» Application Speedup compared to Leon-only
- Depending on number of available Atom Containers (in

simulation up to 20)

\en, KIT, 2016

- 67 -

RISPP Summary

» Novel hierarchical Special Instruction composition,
enabling different performance-area trade-offs

» RISPP provides very high adaptivity that is demanded for
changing control flow (e.g. depending on input data)

» Solved the reconfiguration overhead problem by upgrading
the Sls

» Evaluated using simulations and FPGA-based prototype

» Conservative Comparison with state-of-the-art
o Comparison with ASIP: up to 3.06x faster
Comparison with Molen: up to 2.38x faster
Comparison with Proteus: up to 7.19x faster
Compared to Leon 2 GPP: up to 26.6x faster

o

o

o

mschen, KIT, 2016 - 68 -

ﬂ(IT Institut fur Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

of Technology

/.2 WARP Processor

Overview

» Fine-grained loosely-coupled Coprocessor

» No compiler required; works on standard
oinaries

» Detects application hot spots during runtime

» Re-implements hot spots as Special

nstructions
> 2 Online Synthesis

» Developed special FPCA fabric and special
place & route tools for online synthesis

KIT, 2016 - 70 -

WARP Architecture and Runtime
Flow

> Profile application to
determine critical regions

Imtlal]y execute

application in ‘

software only

3 Partition critical
regions to hardware

FPGA ~-chi «

(W-FPGA)

S Partitioned application
executes faster and

with lower energy .
Consumplion ‘ Warp-onented

Program configurable logic
and update software binary

src: [LSVO06]
— 7'| —

en, KIT, 2016

Determining critical kernels
by online profiling

» Typically, the critical kernels correspond to
frequently executed (inner) loops

» Characteristic of inner loops: ends with a short
backward branch (sbb) targeting the beginning of

the loop
- ‘short’ means: small offset compared to current

instruction memory address
» Generally unknown how many different inner

loops exist

> > use a Cache architecture to track the most important
ones (i.e. those with the highest execution frequency)

n, KIT, 2016 - 72 -

Determining critical kernels
by online profiling (cont’d)

» On a miss in that cache (currently unknown sbb
needs to be stored) replace the least frequently
used sbb (loss of accuracy)

» On overflow in any counter halve all values (shift)
- Emphasizes on recent sbb activities

> Loss of accuracy; but critical kernels still can be detected
: - To L1 Memory
- Halving is done A

as a feature of .
. 'Y Wr
the cache either S Frequent Loop F——5—¥|Frequent Loop
7 rd/wr addr Cach
parallel(area) or 9 » Cache |——— ache
- e addr Controller
Sequent|a| (Ia— & sbb > saturation
tency overhead) § > g
T_ +
data data

src: [GVO03]
n, KIT, 2016 - 73~

Determining critical kernels
by online profiling (cont’d)

» The Cache Controller can detect sbb instructions automa-
tically by partially decoding the executed instruction

» Non-intrusive System (uP not modified)

> Important for real-time systems where changes in execution
behavior could significantly affect the guarantees

> Additionally minimizes the impact on current tool chains, e.g.
avoids special compilers or binary modification tools

» Extension: Coalescing

- When the inner loop executes several times, the cache controller in
the online monitoring is very active in reading, incrementing,
writing the cache - high power consumption

> Instead: count all executions of one inner loop separately and
whenever another loop executes, then update the cache once

hen, KIT, 2016 - 74 -

Online Synthesis

» Challenges: The online synthesis (CAD tool) needs to execute
online while the user application is running

- Typically CAD tools executes offline on a powerful workstation

- Demanding high memory (GB) and computational resources (minutes
to hours to implement accelerators)

» Simplification: Warp targets seldom-changing, long-running
applications

> |t may be acceptable to spend seconds to minutes for online synthesis
after the application started (once!), if it runs faster afterwards
> Limits the adaptivity during application execution while maintaining a
high flexibility to accelerate any type of application
» But: memory problem remains (time is available if you are
willing to wait; gigabytes of memory are not)

chen, KIT, 2016

- 75 -

Reducing Memory- and Computational
requirements for online synthesis

» Simplified FPGA
- Smaller LUTs (3-input LUTSs; state-of-the-art FPGAs have
4-6 input LUTs) = simplified Mapping and Placement
o Less LUTs per CLB - simplified Mapping and Placement

- Fixed routing inside a CLB = simplified Placement and
Routing

- Simplified Switching Matrices (less connections per
Switching Matrix and no connection to distant Switching
Matrices) = simplified Placement and Routing

» Simplified algorithms

> Nearly all algorithms (Mapping, Placement, and Routing) are
greedy heuristics that do not achieve the quality (e.g. area
and latency) of state-of-the-art algorithms

» Together: Trading-off quality vs. runtime overhead

hen, KIT, 2016 - 76 -

WARP-oriented FPGA

» Contains several hard-wired elements in addition
to the actual FPGA
- Access to memory via Data Address Generator (DADG)
> Loop Control Hardware (LCH)
o Input/Output registers

- Dedicated Multiply
Accumulate unit (MAC)

» The core pipeline is
stalled during SI

execution Routing-oriented
> No cache coherency/ Configurable Logic

consistency issues Fabric
> Not really co-processor

src: [LSVO06]

- 77 -

en, KIT, 2016

WARP-oriented FPGA (cont’d)

Simple Configurable Logic Fabric

v

v

CLBs are surrounded by Switching Matrices (SMs)

v

Each CLB connected to a singleSM ____----

- —————
— -

SMs are intercon-
nected to nearest
neighbors (short
channels) and to
second nearest
neighbors (long
channels; dashed
lines) in horizontal
and vertical direction

v

src: [LVTO5]
- 78 -

WARP-oriented FPGA (cont’d)

» CLB contains two 3-input/2-output LUTs with

optional registers at the outputs

. b de f
» Provides a trade-off T i

between area and delay -«
» Simple and regular Adj
. . | LUT LUT
structure simplifies ¢z CLB
mapping and éil é’—_ év_zl g
placement < <

ol o2 o3 o4

src: [LVTO5]

- 79 -

WARP-oriented FPGA (cont’d)

v

v

4 short channels and 4 long channels (L) per direction

A channel / can only connect
to the same channel / at one

of the 3 other directions
(using the diamonds
as connectors)

Additionally the short
and the long channels

of the same channel
number / can be con-
nected (using the circles)

Simplifies the routing

KIT, 2016

0 1 2 fOL1L2L3L

AL >
M O $
11 O <
O O @
3 < O
2 b O
1 &> O
0 A

0 1 2 3 OLIL2L 3L

src: [LVTO5]

3L
2L
1L
OL

il N

- 80 -

Online Synthesis

» Decompilation: converts binary Binary |
into a high-level representation
(e.g. control/data-flow graph) Binary ~ Decompilation
_r . . - Upd
» Partitioning: selecting critical peater
kernels Partitioning

» High-level synthesis: create

netlist (Boolean expressions) Behavioral and
RT Synthesis

» Low-level synthesis (FPGA
compilation): FPGA specific place
and route JIT FPGA

Compilation

» Binary updater: Actually use the
new hardware

Binary

Upda tedJ

]

src: [LSVO06]
n, KIT, 2016 - 81 -

Calling Special Instructions

» Problem: application binary is not aware Binary |
of the Special Instruction (due to online
synthesis)

Binary
» But: old code is no longer required Updater
- may be overwritten

» Solution:

1. Replace first instruction of old code with a
jump to a new hardware initialization
handler

2. This handler prepares & calls the hardware
of the Special Instruction and stalls the CPU
pipeline

3. When the Special Instruction completes,
the handler jumps to the instruction that

follows the last instruction of the old Updated
code Binary
src: [LSVO06]

hen, KIT, 2016 - 82 -

Low-Level Synthesis

» Logic Synthesis: simplified logic minimizer

» Technology Mapping: represent |0giC i :
as FPGA-specific LUTs and pack Logic Synthesis
multiple LUTs into CLBs

» Placement: Bind the created ; i Technology Mapping|:
CLB-nodes (of the graph/
. JIT FPGA :
netlist) to actual CLBs on Compilation ~ ; ~ Flacement
the FPGA such that com-
munication partners are Routing

placed near to each other
» Routing: Connect communication partners

src: [LSVO06]
n, KIT, 2016 - 83 -

Riverside On-chip | Sty
Router (ROC R) Initialize SCLF routing
cO5ts
» Simplified routing resource v
g raph Creedilv route all un-
> Goal: saving memory routed nets

- Two connection types for long
and short routing channels

o Connections annotated with costs

Illegal routes
exist?

» Top-down approach: greedy
assignment of edges to

connections |, | Rip-up illegal

- Connections contain the actual routes
routing channels J,

> The first step does not assign Adjust SCLF
edges to channels but only routing costs
counts whether sufficient

channels would be available I

> Adjust the routing cost for
overutilized connections

src: [LVTO5]
en, KIT, 2016 - 84 -

Riverside On-chip |

Router (ROCR)

» Second step: detailed routing,
i.e. assigning edges to
channels

» Based on a conflict graph

- Two edges of the routing graph
conflict when both routes pass
through the same switching
matrix

> The routes (edges) in the routing
graph become nodes in the
conflict graph that are connected
if they have a conflict

» Solved by graph coloring

> Ensuring that two connected
nodes have different colors
(corresponds to different
channel assignments)

1en, KIT, 2016

Start routing

v

Initialize SCLF routing
COSts

‘q

Greedily route all un-

routed nets

Illegal routes
exist?

Build/Update routing
conflict graph

¥

Assign route channels

(Brelaz’s vertex coloring)

Illegal channel
assignments?

Done!

Rip-up illegal

routes

:

Adjust SCLF

routing costs
yes
src: [LVTO5]
- 85 -

Results

» Comparing
scalability with
a standard
router (VPR) in
normal mode
and in fast
mode

o Executed on
a 1.6 GHz
Pentium

» Routing diffe-
rent algorithms
fora 100x100
CLB array

> Note: low array
utilization!

chen, KIT, 2016

Execution Time (s)

200

—
~
U

—
N
o

—_
N
on

—
o
-

~J
N

50

25

0

o VPR

aAVPR (Fast) xROCR

650
M

yd
//x /
/

O S O

O
S)
NS MRS

P

Circuit Size (CLBs)

S S
S S
o WP

O
N

Q

src: [LVTO5]

- 86 -

Results (cont’d)

» Significantly reduced memory requirements (at most 8 MB;
allows for execution on embedded CPUs)

» Slower critical path (30%)
> Not clear, how it would perform for higher FPGA utilization

Memory Usage (KBytes)

150000 200 —x
126602 O Minimum 175 Lo o VPR A VPR (Fast) x ROCR &
125000 113535 DOAverage [E‘ 150 x o
B Maximum — X % x
100000 £ 125 1% = * % 5
T X XX x a o
o 100 Ex8 anx
75000 S 75 Rt ef 4
T 50 , o
50000 O
25
25000 0 I‘ T T T T T T
8352 Q 9 9 O 9 O 9 O O
. I_I_-_ GDQ '\QQ ,\GDQ q/QQ qﬁDQ %QQ 0§3Q D‘QQ
VPR VPR (Fast) ROCR Circuit Size (CLBs)

src: [LVTOS5]
imschen, KIT, 2016 - 87 -

Warp Summary

» No effort for Application developers
o Works on existing application binaries

» High speedup possible for small kernels (after online synthesis is
completed)

» But: some applications are hard to optimize

o Code is not restructured by Warp tools to separate between HW-accelerated parts and
software parts

> Interface must be derived automatically

» Optimization takes rather long due to online synthesis

> From seconds to minutes for the router running on a 1.6 GHz Pentium and
correspondingly longer on an embedded ARM (i.e. the actual target on which they
wanted to execute their online synthesis)

» Altogether: interesting approach that demonstrates high flexibility
(targeting different applications but not within an application or across
multiple applications) and that provides a new trade-off between
flexibility, programmer/compiler effort, and efficiency

chen, KIT, 2016 - 88 -

ﬂ(IT Institut fur Technische Informatik
| Chair for Embedded Systems - Prof. Dr. J. Henkel

/7.3 Dynamic Instruction
Merging (DIM)

DIM Overview

» Tightly-coupled coarse-grained architecture

» No compiler required; works on standard
binaries

» On-the-fly online-synthesis
> i.e. no lengthy synthesis algorithms

> creation of the Special Instructions during
execution of the original instructions

» Caching of the created Sls

n, KIT, 2016

- 90 -

f

Binary Translation (BT)

» Starts on the first instruction after a branch

» Stops when it detects an unsupported instruction or
another branch (unless ‘speculative execution’ is
supported, i.e. speculating on the branch)

» In between: each executed instruction is placed on
the reconfigurable array

> Creating a configuration on-the-fly and extending it by
each executed assembler instruction

- Using several temporary tables to manage utilized
resources, data dependencies etc.

» If more than three instructions were found, the
created configuration is cached

,KIT, 2016 - 91 -

BT Overview

» First time a hot spot (dark grey) is executed, it is
translated into a configuration, i.e. SI

> It is not necessarily known, that it is a hot spot; but ‘hotter’ spots
have a higher chance to remain in the cache

» For subsequent executions, the cached configuration is
loaded and exe- gt time Next times

Cuted l.....‘.."...il..-......-.0.-...-.‘l.’.l......‘...-.0.-...-..-.0.-..--0‘.."...-.0.

S 777 Load

configuration

Save Rec. Cache

Processor Translate

Load
operands

Reconfigurable
Array

Write
Back

.I.'.I.h

Execute

Coarse-grained Reconflgurable

src: [RBCOS8]

M. Damschen, KIT, 2016

- 93 -

Coarse-grained Reconfigurable
Array (cont’d)

» The array is composed of different building blocks
- ALUs, Load/Store Units, Multipliers

» Lines of these building blocks are connected to

subsequent lines, using multiplexers

> Note: the previous example does not necessarily have 18
physical lines; it rather has 3 physical lines; Line 4 reuses
the hardware of Line 1

> But: configuration memory for all lines is needed to switch
the configuration while the Special Instruction executes

» At design time, different (application specific)
reconfigurable fabrics can be composed

- 94 -

KIT, 2016

Example

..

dst-
reg

1) Add @D STD g
2) Add@erse 02090202 8 sl 11 1O &
3) Add r9, l’ﬁ =
4) Add r1, rZ.% 3
5) Add r4, r2,
6) Lw 8 - 1
7)Lw \C)4 2 RS 8 B
8)Addr1, r2,@@ - L

[
D

£
e

—
-
=

Parallel Execution

» Creating the configuration step-by-step

» Considering dependencies

src: [RBCO8]
M. Damschen, KIT, 2016 - 95 -

Results

» Average Speedup for different Configurations of
the reconfigurable array and dif-

ferent Cache sizes for s S
. . #Columns 11 16 20
the configuration data |}’ e - 2
(“ T . . #Multipliers / line 1 2 2
» “Ideal” assumes infinite | sastine 2 5 6
hardware speedup o
y 350 T w16 1#cache slots =
» “Specula- 300 1| g & o
tion"al- & 2°0 {|wzs . o
aled i u
lows spe- & *” : :
_ 5 150 - - <
culatlv_e 2 100 : o
execution g 050 7 = 3
0.00 . |
W o % CO”’T;? O % ,%‘9/ E o, % O %> Oy, %5 ,%6/
M. Damschen, KIT, 2016 = src: [BRGCO8] - 96 -

DIM summary

» Efficient way to support online synthesis on-
the-fly

» Moderate speedups

- Also depends on how the compiler schedules the
code

- Limited room for optimizations when creating a
configuration on-the-fly
» Application-specific reconfigurable fabrics
provide higher speedup for the targeted
application at the cost of reduced generality

KIT, 2016

- 97 -

References and Sources

[BSHO8a] L. Bauer, M. Shafique, J. Henkel: “A Computation- and Communication-
Infrastructure for Modular Special Instructions in a Dynamically Reconfigurable
Processor”, International Conference on Field Programmable Logic and
Applications (FPL), pp. 203-208, 2008.

[BSKHO8] L. Bauer, M. Shafique, S. Kreutz, J. Henkel: “Run-time System for an
Extensible Embedded Processor with Dynamic Instruction Set”, Design Automation
and Test in Europe Conference (DATE), pp. 752-757, 2008.

[BSHO8b] L. Bauer, M. Shafique, J. Henkel: “Run-time Instruction Set Selection in a

Transmutable Embedded Processor”, Design Automation Conference (DAC), pp.
56-61, 2008.

[BSHO9] L. Bauer, M. Shafique, J. Henkel: “MinDeg: A Performance-guided
Replacement Policy for Run-time Reconfigurable Accelerators”, Int’l Conference on
Hardware-Software Codesign and System Synthesis (CODES+ISSS), pp. 335-342,
20009.

[BSHO8c] L. Bauer, M. Shafique, J. Henkel: “Efficient Resource Utilization for an
Extensible Processor through Dynamic Instruction Set Adaptation”, IEEE
Transaction on Very Large Scale Integration (TVLSI) , vol. 16, no. 10, pp. 1295-

1308, 2008.

nschen, KIT, 2016 - 98 -

References and Sources

[LSVO6] R. Lysecky, G. Stitt, F. Vahid: “Warp Processors”, ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 11, no. 3, pp. 659-681,
2006.

[GVO3] A. Gordon-Ross, F. Vahid: “Frequent Loop Detection Using Efficient Non-
Intrusive On-Chip Hardware”, International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), pp. 117-124, 2003.

[LVTO5] R. Lysecky, F. Vahid, S. X.-D. Tan: “A Study of the Scalability of On-Chip
Routing for Just-in-Time FPGA compilation”, IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 57-62, 2005.

[BRGCO8] A.C.S. Beck, M.B. Rutzig, G. Gaydadjiev, L. Carro: “Transparent
reconfigurable acceleration for heterogeneous embedded applications”, Design
Automation and Test in Europe Conference (DATE), pp. 1208-1213, 2008.

[RBCO8] M.B. Rutzig, A.C.S. Beck, L. Carro: “Balancing reconfigurable data path
resources according to application requirements”, International Parallel and
Distributed Processing Symposium, pp. 1-8, 2008.

hen, KIT, 2016 - 99 -

ﬂ(IT Institut fur Technische Informatik
| Chair for Embedded Systems - Prof. Dr. J. Henkel

7.4 Further relevant
architectures / domains

(not relevant for exam)

7.4.1 Dynamic Network-on-Chip
(DyNoC)

Ping-Pong |
| | /T
Obstacle
Component
Routing
Path1™ Routing
Path 2
Destination |
0—0 Component |

src: C. Bobda et al. “DyNoC: A Dynamic Infrastructure for
Communication in Dynamically Reconfigurable Devices”, IEEE
Design & Test of Computers, 22(5), pp. 443-451, 2005.

M. Damschen, KIT, 2016 -101 -

7.4.2 Configurable NoC: CoNoChi

1 |
(Static partition) I(Reconfigurable partition)

Processing

Lt

4|

Reconfiguration

Con

Logic

trol

ICAP

r

L

) |

11O
Controller

r

Y

X

SoC
Controller

X

Static
SoC
Components

Processing Unit 3

A e

XL
HTE ﬂTﬂ_ | Cg
ToFiE--FTA- BT 2
| [H] T&

I U R
T HEIEE

__E___E__

i
b
il
]
x|
-
G uun
Buissaosoiy

Type V

L L
'~ HH
X

H, M
& &

Type S

Application
specific

hen, KIT, 2016

Type O

src: T. Pionteck et al. “A Design Technique for Adapting
Number and Boundaries of Reconfigurable Modules at
Runtime”, Int’l Journal of Reconfigurable Computing, 2009.

02 -

Configurable NoC: CoNoChi

i ™

M5 llog add|
Interface

X

)L

|

ot |
Interface ; :
; I

XC M
p{ 7 D f= —:
I

|

src: T. Pionteck et al. “A Design Technique for Adapting
Number and Boundaries of Reconfigurable Modules at
Runtime”, Int’l Journal of Reconfigurable Computing, 2009.

, KIT, 2016 - 103 -

FG-EDPEs are FPGA-like
7 . 4 . 3 KAH RI S MA reconfigurable fabrics,

CG-EDPEs are ALU-like recon- optimized for bit/byte level
figurable fabrics, optimized for 1 operations, state machines
word/sub-word level operations |- --A etc.
Lache Subsystem_ p—— EDPE Interconnect Ngtwork
EDPE Interco?nect Nefwork F—=-| , ; : N
f) Jﬁegister File — = &Y e SM | ooeee
S NG ~ 1 5
55 Gl] — % Ej 4 4 v L
% - 3 _g EgSE TeREs
S = . = 3 . SM CLB SM CLB
- & . '
v o ol | Processing E-
5 £3 Block .
s ;
R <

Context Memory
Cache Subsystem

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009. 104 -

KAHRISMA

RISC1 Instruction Cachefriles _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ __ ____ 7
Application | - - - . ‘ -
Domain 1 netructon Fetch L4 ¢=| @ Instruction Cache
“ ________ -~ @ Instruction Fetch & Align
:f O 0 @ Cache access, exjtraction of
vt Srdnos 2orE Ay] the actual instruction packets
= | m Instr. Analyze & Dispatch

® Extraction of the individual

CcG cG FG \ . . .
\ operations out of an instruction

packet

cG CG FG \

| @ Dispatching of operations
| ap o

EDPE EDPE EDPE ‘

@ Flow-Control Handling of

‘; Interrupts, Exceptions etc.

Application Il -

Domain 1

Processor Control Unit
Reconfiguration Control, Ressource Allocation, Elements’ Active State ManagementJ
A
Main Memory

el N— ;(3 _—
Sl I 20
CG CG F@ CG CG FG CG] | [g S
EDPE EDPE EDPE EDPE EDPE EDPE EDPE gl J O S
o
\ - - =

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

en, KIT, 2016 - 105 -

KAHRISMA
) [nstruction Cachelrites o _____ - -
~ Application 1>\ | T [| |

Domain1 4 & Ul _ Btes """

Instruction Predecode

\
cG cG FG cG l
EDPE EDPE EDPE EDPE I
I D
CG cG FG cG
EDPE EDPE EDPE EDPE I
fFcc CG FG CG
EDPE EDPE EDPE EDPE
cG cG FG cG
[EDPE | EDPE EDPE EDPE
CG cG FG CG CG FG CG
EDPE EDPE EDPE EDPE EDPE EDPE EDPE
CG CG FG CG cG FG cG
EDPE EDPE EDPE EDPE EDPE EDPE EDPE
. J

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

hen, KIT, 2016 - 106 -

.

Subsystem
Main Memory

Banked Data Cache

Application Il -

Domain 1

/

Processor Control Unit
Reconfiguration Control, Ressource Allocation, Elements’ Active State Management

00000

Context Memory
Cache Subsystem

Load-Store Opcode Handling

(
I
I

KAHRISMA

Application -

Instruction CachelTiles

Instruction Predecode

c

[0}

€

[}

()]

®

C

©

=

2

S

n

(]

2

©

<
2
(== . § .

()] £ Y A \,‘ .
o2 cG cG l D =
o ° EDPE EDPE | (@)
s w L y o E
e 2
6 9 — | Se o
S 5 { cG s =
8 é’ EDPE | g % c
28 33 3
5 5 | IX%) S
o o s

o

] PR

5 CG FG CG £ D —

38 EDPE EDPE EDPE EDPE 2

= (C

S T

© [

g g D 2§

3 CG cG FG CG cG FG cG g G2

b= EDPE EDPE EDPE EDPE EDPE EDPE EDPE 3 £ >

9 o s o

3 o =

o s o

CG cG FG CG cG FG cG ® | €5
EDPE EDPE EDPE EDPE EDPE EDPE EDPE 3 38
[] _
\) s.—Z)

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

chen, KIT, 2016 - 107 -

KAHRISMA

Application - Hypermorphism:
Domain 2 Dynamically combining the
reconfigurable modules to realize
different ISAs as well as Custom
Instructions (Cls) upon application
requirements

KArlsruhe’s Hypermorphic
Reconfigurable Instruction-
Set Multigrained Array

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

n, KIT, 2016 - 108 -

7.4.4 Reconfigurable Multi-Core

Architecture in “Invasive Computing”
g DSU,\

PU A Tile-local
Memory APB,
(TLM) .

1$ | D$

i-Core
(CPU 0)

L2 Cache

{0000

Tile-local
Memory
(TLM)

o8

[1/OBuffers |

BE

Em-

1/0O Buffers

I/O Buffers
E
i<

L2 Cache e £
Lictd]

[1/OBuffers |

=,

- 109 -

EB Config. Manager EE

Previous Reconfigurable Multi-

Core Architectures

Shared fabric:

SRAM Scratchpad SRAM Scratchpad)
! AN ‘

Spatial Partitioning:

A

Memory Port PR N N p N
N Port Port Port Port
[Accelerators
J Accel. Accel. Accel. Accel.
AN A (7))
J U J S J
4 Y N\ ()) ‘2) 1
Corerr§<rCore2 N (A [) A
[%p]
— |g| ——~ Core 0 Corel l—lal—| Core2 Core 3
M) g S
Core 1 || &[] Core 3 VAN J J J
- J N\ / U__J N

m Shared reconfigurable fabric, e.qg.

[Chen@DACT 1] » Dedicated fabric share per core, e.qg.
w Problem: Only 1 kernel can be run [Watkins@MICRO10]
on the fabric at any time » Reduced reconfigurable area and memory

bandwidth per core

» Problem: No adaption to dynamic
workloads

-110 -

, KIT, 2016

COREFAB Architectural Extensions

Reconflgu_rable ~ (_)l SRAM Scratchpad
Processing
Units
— -(—)[Core 2]
RPU || RPU || RPU || RPU "
0 1 2 3 >
= -(—)[Core 3]
\L J L J J L 4) 8
1 =
sl Fabric Controller 2
) -(—)[Core 4]
[Core 1](—)-
SI micro-program
memory NVZ
M \ \ KIT, 2016 - 111 -

COREFAB Archite/c{ural Extensions

& Memory Port A l—

—! L L L -(—)[Remote Core]

A 4

SRAM Scratchpad

RI Fabric Access o/
(']
Manager c -(-—)[Remote Core]
b g
1 2
_|Merger| Fabric Controller | FAM | 1~
i I(-—)[Remote Core]

[Primary Core

_Eg micro-prog ra”i<—> Eergqgorger;lsrlnr:rircl (r)?j
- - memory v

KIT, 2016 - 112 -

Merging Fabric Accesses

Prerequisite:

» Set of fabric resources used by current primary and remote pOp
must be disjoint

primary pOp remote pOp

MSB LSB

Fabric resource merged IJOp
in use by uOp

hen, KIT, 2016 - 113 -

Merging Fabric Accesses

Prerequisite:

» Set of fabric resources used by current primary and remote pOp
must be disjoint

primary pOp remote pOp

I [} I

Conflict between primary
and remote pOp

» Conflict between pOps = merging not possible

M. Damschen, KIT, 2016 - 114 -

S| Merging

conflict detected

Primary Sl — stall remote
[1
2 2
conflict detected
3 3 _, stall remote
4 4
: L]

uOp for fabric configuration

Execution time for both Sls: 6 cycles

- 115 -

M. Dam's'chen, KIT, 2016

COREFAB Results

. Reconf-Base . Spatial-Partitioning Shared Fabric COREFARB
[Watkins@MICRO10] [Chen@DAC11]

S » 1.3x faster on Remote
cores or 3.1x faster on
Primary core compared to

N

.gg state-of-the-art

E%J 3 approaches

c O

go » Overhead:

%&% 2 - Size ~ 1/3 of size of LEON-3
<Q

Component LUT BRAM
FAM 98 0

. S| Merger 1133 0
I I Remote-SI mem 187 14
- hemote Primary Total 1418 14

-116 -

M. Damschen, KIT, 2016

7.4.5 Multi-tasking for reconf. proc.

» Demand: Many systems are multi-tasking systems anyway

» Optimization: Performance loss until reconfiguration of
accelerators finished (range of milliseconds)

» Example: H.264 video encoder processes 1 frame

Deblocking
Motion Estimation Encoding f'FiIter

2500 k ¢

® Gray Bars: Cycle loss
due to unavailable
accelerators (com-
pared to optimistic
zero—-cycle reconfi-
guration latency)

500 ®m If it were zero, the
- frame would have
05 1.0 15 been processed
Application Runtime [million cycles] 1. 3 5 X faste r

N
o
o
o

—
(&)}
o
o

—
o
o
o

Reconfiguration-induced
Cycle Loss (RiCL) [cycles]

M. Damschen, KIT, 2016 -117 -

Analyzing the EDF scheduling
policy for reconf. processors

Task T1: Deadline: 10ms
Kernel 1: e Software: 10ms
Kernel 2
Kernel 2: e Software: 6ms

Task T2: Deadline: 8ms
Kernel 1: e Software: 5ms

| ’ 1

15ms 20ms 25ms

M. Dam's'chen, KIT, 2016 - 118 -

Analyzing the EDF scheduling
policy for reconf. processors

Task T1: Deadline: 10ms T ” Reconfigurable
Kernel 1: e Software: 10ms = Containers
e After 2ms reconf: 5ms (2x faster) —g——
e After 4ms reconf: 2.5ms (4x faster) | & &
Kernel 2: e Software: 6ms _GEL
e After 3ms reconf: Tms (£ fasier) [Q] |)

Task T2: Deadline: 8ms
Kernel 1: e Software: 5ms

| ’ 1

15ms 20ms 25ms

en, KIT, 2016 - 119 -

Analyzing the EDF scheduling
policy for reconf. processors

Task T1: Deadline: 10ms T ” Reconfigurable
Kernel 1: e Software: 10ms S Containers
e After 2ms reconf: 5ms (2x faster) =
e After 4ms reconf: 2.5ms (4x faster) | & &
Kernel 2: e Software: 6ms _QEL
e After 3ms reconf: Tms (7 fasier) |[Q
R I ¢ y
Task T2: Deadline: 8ms
Kernel 1: e Software: 5ms
T1
—>
- 15ms 20ms 25ms

M. Dam's'chen, KIT, 2016 - 120 -

Analyzing the EDF scheduling
policy for reconf. processors

Task T1: Deadline: 10ms T ” Reconfigurable
Kernel 1: e Software: 10ms g Containers
o After 2ms reconf: 5ms (2x faster) '@ —
o After 4ms reconf: 2.5ms (4x faster) |5
Kernel 2: e Software: 6ms _QEL
e After 3ms reconf: Tms (£« fasrer) O |)

Task T2: Deadline: 8ms
Kernel 1: e Software: 5ms

:II-'*| H([Tﬁ

10ms 15ms 20ms ms

M. Damschen, KIT, 2016 -121 -

Analyzing the EDF scheduling
policy for reconf. processors

Task T1: Deadline: 10ms T ” Reconfigurable
Kernel 1: e Software: 10ms = Containers
o After 2ms reconf: 5ms (2x faster) '@ —
o After 4ms reconf: 2.5ms (4x faster) |5
Kernel 2: e Software: 6ms _%’L
e After 3ms reconf: Tms (7 fasier) | Q| |

Task T2: Deadline: 8ms
Kernel 1: e Software: 5ms

" | |

-
2| REEER IIF

40ms zgms

M. Damschen, KIT, 2016 - 122 -

Lessons learned

» Scheduler needs to consider that tasks have different
Performance Levels that change over time

> Try to exploit high performance levels, i.e. schedule those tasks

> Try to avoid low performance levels, i.e. do not schedule those
tasks

» Keep the reconfiguration port busy

> If a task that is known to use Special Instructions did not issue a
reconfiguration request (for the next kernel) yet, then schedule it

- Reason: it will not increase its performance level until it at least
issues a reconfiguration request
» Additionally: consider the soft deadlines of tasks

> Even if a task has a low performance level, it might need to be
scheduled to meet its deadline

en, KIT, 2016 - 123 -

A better schedule

Task T1: Deadline:
Kernel 1:

Kernel 2:

Task T2: Deadline:
Kernel 1:

2 X

10ms
e Software: 10ms

e After 2ms reconf: 5ms (2x faster)

e After 4ms reconf: 2.5ms (4x faster)

e Software: 6ms

e After 3ms reconf: Tms (7 ¢

8ms
e Software: 5ms

M. Damschen, KIT, 2016

raster)

N

{ Cbre Pipklir{e l

Reconfigurable
Containers

\

- 124 -

A better schedule

Task T1: Deadline: 10ms Tﬁ ” Reconfigurable
Kernel 1: e Software: 10ms S Containers
e After 2ms reconf: 5ms (2x faster) =
e After 4ms reconf: 2.5ms (4x faster) | & &
Kernel 2: e Software: 6ms _QEL
e After 3ms reconf: Tms (7 fasier) |[Q
4 < W,
Task T2: Deadline: 8ms
Kernel 1: e Software: 5Sms The other schedule finished here
9
p I—»

40ms 45ms

M. Dam's'chen, KIT, 2016 - 125 -

Core Idea: Performance Level

» To calculate the Performance Level e [0,1] for Task 7
that executes Kernel Kat time ¢ we consider:
- Which accelerators are requested for Kernel K
- How many accelerators are attained at time ¢

- = Calculate the average latency of the Special Instructions
given the currently available accelerators compared to the
latency after all requested accelerators are available

Z S.latency (T .reqAdcc(K))

S.latency (T.attA cc(t))
SIs § invoked

(

|

|

J in Kernel K SIs § invoked
|

|

in Kernel K

, 1f

SIs § invoked in Kernel K|

1 , else

hen, KIT, 2016 - 126 -

Maintaining the task’s state

» NRQ: Not Released Queue - these tasks cannot be
scheduled, as the previous job (if any) has
completed and the next job is not released yet

» LPQ: Low Performance Queue - tasks can be scheduled
but they would run at a reduced Performance Level
due to not yet reconfigured accelerators

» FPQ: Full Performance Queue - these tasks can be
scheduled and all requested accelerators are
available

» (Re-)assigning tasks to queues is managed
> at context switch

- when a reconfiguration completes

- when a task requests different accelerators

mschen, KIT, 2016 - 127 -

PATS: Performance Aware Task Scheduling

candidates =

FPQ u {t € LPQ
| t.slack < 0} —

candidates A\)er candidate

= LPQ
B
- 128 -

M. Damschen, KIT, 2016

Task Scheduling Results

§ 1,400
o

1,200
Sl
1,000

»

PATS: Performance Aware Task
Scheduler

o Def. System Tardiness: Sum of all times
that jobs finished too late

> Qutperforms the other scheduler in
nearly all cases

> Only in rare cases slightly beaten by EDF

> Sometimes RR is the closest competitor,
sometimes the worst performer

o PATS is on average 1.92x, 1.29x and
1.14x faster than RMS, EDF, and RR,
respectively

MORP: Makespan Optimization for
Reconfigurable Processors

o Def. Makespan: Time until all
concurrently started tasks of a task set
are completed

> Hybrid task-scheduling and area-
allocation approach

o Makespans are only 5.8% (mean) worse
than upper bound

M. Damschen, KIT, 2016

Speed relative to Optimal System Tardiness

800
600
400
200

Round Robin

= SPT
MORP

1 5 10 15
Reconfigurable Fabric size [# RPUs]

- 129 -

7.4.6 High-Performance Compu-
ting (HPC) Domain: Convey HC-1

COprocessor

Host memﬂr}fDIM.fws. e -Hﬂ_‘ .":5.'5’
16 POIE siot N\ @ MEZEE”WE

 2U enclosure: S S
— Top half of 2U platform
contains the coprocessor

— Bottom half contains [niel
motheroard

Host x86 | ' ;:{3%15- Disk Drives
Server Assembly

src: Convey Workshop 2010; http://www.conveycomputer.com/

- 130 -

hen, KIT, 2016

HC-1 Physical Layout

pe—] S—

L=yl e i BT

< P Dimmct Data Pore s - (SRR RS ARl S ===
\\ src: Convey Workshop 2010; http://www.conveycomputer.com/

M. Damschen, KIT, 2016 -131 -

