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Developed at CES, KIT 

Tightly-coupled fine-grained reconfigurable 
fabric 

Introduces and implements modular SIs 
Provide different performance/area trade-offs at runtime 

Realizes high runtime adaptivity, i.e. a runtime 
system decides which reconfigurations shall be 
performed and when they shall be performed 
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Some parts were already introduced as case-study in 
previous lectures 
Instruction Format (up to 4 read and 2 write registers, 
immediate values, 10-bit virtual opcode) 
Using the core ISA (cISA) to implement SIs when their 
reconfiguration is not completed yet (trap handler) 
Special Instructions have access to main memory and to a 
fast on-chip scratch-pad memory 

Using two independent 128-bit ports 
Pipeline stalls when SI executes in hardware 

Dynamic Prefetching (called ‘Forecasting’) using weighted 
error-back propagation 
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Partition the reconfi-
gurable fabric into so-
called SI Containers 

aka ‘Reconfigurable 
Functional Unit’ 

An SI may be loaded 
into any free Container 
Problems: 

Relatively long reconfi-
guration time 
Limited Resource Sharing 
Fragmentation (not the 
entire available space 
may be usable) 

Partition the reconf

Co
re

 P
ip

el
in

e
Co

re
 P

ip
el

in
e

Legend:
Special Instruction

Container (SIC):
Reconfigu-
rable area:

Core Pipeline 
(scaled down):

Corresponds to 
OneChip, Chimaera, 
Proteus, … 
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All 31,977 SI executions 
completed 

RISPP’s 
modular SIs 

src: [BSH08a] 
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Definition Atom: 
A computational data path
Smallest block that can be reconfigured (‘atomic’ in that 
sense) 

Example: Transform Atom 

Definition Atom:
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Definition Special Instruction: 
An assembly instruction 
Dataflow graph of Atoms 

Example: Sum of Absolute 
Transformed Differences (SATD) 

Definition Special Instruction: Example: Sum of Absolute

MMM.M.M.M.MM.M.. DaDaDaDaDaDaDaDaDaamsmsmsmsmsmsmsmsmmsschchchchchchchchchchc enenenenenenenenene ,,,,,,,, KIKIKIKIKIKIKIKKIKITTTT,T,T,T,T,TT,,, 202020202020202020201616161616161616166 - 111 --

g p

INPUT: OUTPUT:DCT=0

QSub SAV (Sum of
Absolute Values)

+

+
+

Repack Transform

HT=0 DCT=0 HT=1
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Definition Molecule: 
Implementation of an SI 
Using the available (i.e. at that time 

reconfigured) Atoms 
Similar to HLS scheduling after 
allocating a certain number of Atoms 

Definition Molecule: reconfigured) Atoms

MMMMM.M.M.M.M.M. DaDaDaDDaDaDaDaDaDamsmsmsmssmsmmsmsmsmschchchchchchchchchcheneneneneneneenenenen,,,,,, KIKIKIKIKIKIKIKIKIKITTTTT,T,T,T,T,T,,, 20202020202020020202016161616161616161616 - 122222 --

g (

+

+

+

Repack (2 instances) Transform (2 instances)

1716151413121110

SAV (2 instances)
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(the numbers
denote: #Atom-
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red for this
Molecule)

1

(an SI can be
implemented
by any of its
Molecules)

For each SI there are different 
implementations (Molecules) 

There is one Molecule that does not 
need any Atom (Software 
Implementation with core-ISA: cISA) 

Atoms can be shared among different 
Molecules and SIs 

Implementation of a particular SI 
can be gradually upgraded by 
loading more Atoms 
 

SI A SI B SI CSPECIAL IN-
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There is no predetermined maximum of supported SIs 
But: it is not possible/easy to execute two SIs at the same time 
(as they are no longer independent)

Not necessarily a problem, see Molen (single controller unit) and 
OneChip (memory coherency problems) 
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SI Molecules: Performance vs. Reconfigurable Resources

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Hardware Resources [Atom Containers]

Ex
ec

ut
io

n 
Ti

m
e 

[C
yc

le
s] IPred VDC 16x16 (I-MB)

IPred HDC 16x16 (I-MB)

MC Hz 4 (P-MB)

max 

Area requirements
[# loaded Atoms] 

0 

5 

10 



M. Damschen, KIT, 2016 - 16 - 

Concept improves the efficiency and flexibility 
Atom sharing 
Reduced fragmentation 
Reduced reconfiguration overhead (due to SI upgrading) 

Decision how many Atom Containers shall be 
spend for which SI can be adapted at runtime 

However, this adaptivity demands a runtime 
system that determines the decision and that 
implies overhead (to execute it) 
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Decode: detects SIs and Forecasts (for prefetching) and sends 
them to the execution controls (only SIs) and Monitoring (SIs and 
Forecasts) 
Execution Control: executes SIs by determining their fastest 
currently available Molecule (state is maintained in a look-up 
table) and triggers the hardware execution (using the Atoms) or 
the software emulation (using the trap handler) 
Monitoring: Counts the executions for each SI 
Prediction: Fine-tunes the Forecasts (recall: dynamic prefetching; 
see below) and resets the monitoring values 

Decode: detects SIs and Forecasts (for prefetching) an

PME

P: Prefetching Point EE: Encoding Engine
ME: Motion Estimation LF: Loop Filter

ME PEE EE PLF LF PME ME PEE EE
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Selection: Select Molecules to implement the 
forecasted SIs 
Reconfiguration Sequence Scheduling: 
Determine the reconfiguration sequence of 
the Atoms that are required to implement the 
selected Molecules 
Replacing: Determines, which currently 
configured Atom shall be replaced by a new 
Atom that is scheduled to be reconfigured 
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Representing the 
Molecules as a 
vector of Atoms 

The example only 
shows 2 Atom Types 
(A0 and A1), thus each 
vector has 2 entries; 
in general: n 

Basic operators 
How many Atoms are 
needed for a Molecule
Which Atoms have 
two Molecules in 
common
Which Atoms are 
needed to fulfill the 
demands of two 
Molecules# Instances of Atom A0

# Instances of Atom A1
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Upgrade operator o  p : 
Given the Atoms of o, which additional  Atoms are needed 
to implement p 
Similarly, the without operator: p / o := o  p 

# Instances
of Atom A0

# Instances of Atom A1

1 2 3

1

2

3

4

4

5

1 3,  2o 3 2o

4,  4p 4 4p

1 1,  2o p 2o 1,  2p 1 2p

# Instances
of Atom A0

# Instances of Atom A1

1 2 3

1

2

3

4

4 5

5

6

4,  4p 4 4p

2 6,  1o 6 1o

2 0,  3o p 3o 0,  p 0p

omitted ‘nega-
tive’ upgrade
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A relation can be 
used to compare 
Molecules with 
each other 

Not all Molecules 
can be compared, 
e.g. o4 and o6 

The relation has 
a infimum and a 
supremum 

Actually it is a 
complete lattice 
(vollständiger 
Verband) 

A relation ca

# Instances of Atom A0

# Instances of Atom A1

1 2 3

1

2

3

4

4 5

5

6

1 2 3 4 5 6sup , , , , ,o o o o o oo

1 2 3 4 5 6inf , , , , ,o o o o o oo

6oo

4oo

1oo

2oo 3oo

5oo

Indicates the
relation ‘ ’
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Details can 
be found in 
[BSH08b] 
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Input to the Selection: requested SIs and their 
different Molecules (in the following SIi will 
denote one of the requested SIs) 

Selection: Choose a subset S of SI 
implementations 

Constraint: Chose exactly one Molecule per SI 

Constraint: Stay within the capacity of the 
reconfigurable hardware (N : Number of Atom 
Containers) 

Optimization goal: maximize the profit (the 
profit may denote the speedup compared to 
software execution; discussed later) 
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Similarities to the well-known NP-hard Knapsack Problem Si il i i h ll k NP h d K
Given: 

A Knapsack with the 
capacity C 
Elements E={ei }  with weight 
w(ei )  and profit p(ei ) 

Task: choose (multiple) 
elements such that the 
accumulated capacity is 
not violated and the 
accumulated benefit is 
maximal 

Weight and benefit are constants 
that depend on the capacity (e.g. 
volume vs. weight) and the 
situation (e.g. for camping a tent 
might be more beneficial than a 
gold bar), respectively 

M. Damschen, KIT, 2016 
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Differences to Knapsack: the 
weight of a Molecule (i.e. the 
number of required Atoms to 
implement it) is not constant 

It depends on the Molecules that 
are selected additionally and on 
their Atom requirements (due to 
Atom sharing between different 
SIs) 

Instead of accumulating the 
individual weights we have to 
combine all Implementations 
and determine their total 
weight 
Question: still NP-hard? 

K k hDiff

M. Damschen, KIT, 2016 



M. Damschen, KIT, 2016 - 28 - 

1. Take an arbitrary input of a Knapsack problem, i.e. 
capacity C, Elements ei with w(ei)  and p(ei) 

2. Apply a polynomial-time transformation on the 
input such that the transformed input describes a 
corresponding Selection problem 

3. Solve the transformed input with an optimal solver 
for the Selection problem such that the result can 
be transformed back into the optimal solution for 
the original Knapsack problem 

4. Then: ‘Instruction-Set Selection’ is at least as hard 
as ‘Knapsack’, i.e. Knapsack p Instruction Set 
Selection 

1 T k bi i f K
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The capacity of the Knapsack determines the number of 
Atom Containers, i.e. N:=C 
For each Knapsack element ei we create one Atom Type Ai 

For each Knapsack element ei we create 
one Special Instr. SIi with 2 Molecules 
The two Molecules represent the decision 
whether or not the element ei should be 
packed into the knapsack 

Not Packed: Molecule uses no Atoms and has 
zero profit
Packed: Molecule uses Atom Type 
Ai  in a quantity that corresponds 
to the weight of the element; the 
Molecule profit corresponds to 
the element profit 
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This SI structure avoids ‘Atom sharing’ (the main difference 
between Knapsack and Selection), as each Atom Type is only 
used by one Molecule 
The solver for the Instruction Set Selection will select one 
Molecule (cISA or Hardware) for each SI (i.e. element) 

Selecting the cISA Molecule (with 0 profit and 0 weight) corresponds to not 
packing the corresponding element into the Knapsack 

Respecting the capacity constraints for the Atom Containers 
corresponds to respecting the capacity for the Knapsack 
Maximizing the profit for the SIs corresponds to maximizing the 
profit for the elements 
The optimal solution for the Instruction Set Selection 
corresponds to the optimal solution for the Knapsack 
Instruction Set Selection is NP-hard 

This SI structure avoids ‘Atom sharing’ (the main difference
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Instruction Set Selection needs to execute at runtime 
Limited resources, e.g. memory and computing time 

Typical Heuristic for Knapsack problems: Greedy 
Algorithm 
1.  Calculate a benefit for each element (profit per weight) 
2.  Sort the benefits in a descending order 
3.  Initialize the Knapsack to be empty and its currently available 

space to its full initial capacity 
4.  Iterate over all sorted elements (starting with the highest 

 benefit): 
 IIF the element fits into the Knapsack (considering the
 still available space in it) 
 TTHEN greedily add it to the Knapsack and update its still 
 available space 
 EELSE skip it (i.e. not selected) and continue with the next 
 element 
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This greedy approach cannot be directly used for 
Instruction Set Selection 

Might choose multiple Molecules per SI 
Presorting the Molecules does not work, because the weight (i.e. 
number of additionally required Atoms) changes, depending on 
which Molecules were previously selected (i.e. which Atoms are 
already selected) 

Modifications are required to use a greedy approach 
After a Molecule was selected we remove the further Molecules 
from the same SI 
Instead of presorting we have to recalculate the profit 
Additionally, instead of using a ‘benefit’ (i.e. profit per weight) we 
can directly use our profit values, as they already contain the 
reconfiguration time (and thus indirectly the size in form of the 
additionally required Atoms) as parameter 

This greedy approach cannot be directly used for
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At first, we remove all cISA Molecules: Instead of explicitly 
selecting them using the greedy algorithm they are afterwards 
added for each SI for which no hardware Molecule was selected 
Iterate in a loop over all Molecule candidates, calculate their 
profit, and remember the Molecule with the highest profit 

Whenever a Molecule is too big (i.e. there are insufficient Atom 
Containers left to reconfigure its additionally required Atoms) then 
remove it from the candidate list 

Select the best Molecule Candidate and clean the remaining 
candidate list, i.e. remove those Molecules that implement the 
same SI 
Iterate, till the candidate list is empty 
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Greedy Algorithm for Knapsack: 
n := Total number of Molecules for all requested SIs 
Computational complexity: O(n  log n) due to sorting 
Additional memory: O(n) for storing the sorting result 

Greedy Algorithm for Instruction Set Selection: 
Computational complexity: O(n2) 
(in extreme case each SI has exactly 1 hardware Molecule and all 
of them together fit into the capacity 

 In each of the O(n) iterations the best Molecule is determined in 
O(n) and 1 Molecule is removed) 
Additional memory: O(1) (to remember the best Molecule)
Advantage: After O(n) iterations the first Molecule is selected and 
reconfiguration may start. While reconfiguration is running, the 
next Molecules can be selected. So, even though the 
computational complexity is higher, the reaction time is shorter. 

Greedy Algorithm for Knapsack:
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Constraints describe a ‘valid’ selection; 
what should be considered for a ‘good’ selection? 
Execution frequency    of SIi  (more often executed SIs 
are more ‘important’) 
Performance improvement of a Molecule 
in comparison to the cISA performance 

Note:      denotes the jth Molecule from SIi 
Reconfiguration time of the Molecules 

Considering ‘how long’ the reconfiguration lasts and ‘when’ 
the SI is needed (i.e. executed) the first time 

Potentially more parameters, but the above para-
meters turned out to be the most important ones 

if

i jx
pari

_ . ()

 . ()
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ij
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x g e tL a ten cy
_ c S g e tL a.cIS A



M. Damschen, KIT, 2016 - 36 - 

_ . ( )
 

 . ( )
 :   

m a x 0 ,  
. ( )

i c IS A

ij

ij i

r e c o n f ij

fir s tE x e c ij

x g e tL a te n c y
L

x g e tL a te n c y
p x f

t x
R

t x g e tS I

Sc IS Ac IS A

jj

Selection factors L  and R  are used to scale the 
parameters 

L: Latency Improvement 
R: Too long reconfiguration time 
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For many parameter pairs, Greedy finds the same solution 
In some (not relevant) cases, Greedy finds a solution that leads to 
a faster execution time  Note: optimally solving Selection does 
not necessarily lead to the fastest execution time (e.g. due to sub-
optimal prediction/forecasting/scheduling/replacement etc.) 

Greedy: Optimal: 
Capacity: 

5 Atom Container 
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Decode Reconf.
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Details can 
be found in 
[BSKH08] 
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After Selection, we have a set of Molecules 
that shall be reconfigured 
Altogether we need a certain set of Atoms to 
realize all Molecules in this set (supremum) 
Initially, some Atoms may already be 
available in hardware and we only need to 
reconfigure the remaining Atoms 
Problem: The reconfiguration is rather slow 
and we have to perform one reconfiguration 
after the other
Question: in which sequence shall the 
reconfigurations be performed? 

After Selection we have a set of Molecules { }iS x

su p ( )
x S

S xxx

su p ( )a Ssu p ( )su p (
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# loaded
Atoms

fastest available
Molecule

1

2

3

4

5

6

3x

1x 2x

A0

A1

1 2 3

1

2

3

1x

2x

3x
2x 2x

3x

Upgrade candidates, i.e.
Molecules for the same SI

f

Note: typically the starting point (here: 
(0,0)) and the ending point (here: (3,3)) vary 
between different Selections/Schedules 
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The Selection determines the 
Molecules of the SIs in a certain 
sequence, i.e. more relevant SIs are 
considered first 

Therefore, the Molecules of the first 
selected SI should be reconfigured first 

Drawbacks: 
Other SIs may not achieve any hardware 
support for a noticeable time and therefore 
become the major bottleneck 
When more Atom Containers are available 
then bigger Molecules will be selected and 
the other SIs are not accelerated for a 
longer time (overall exec. might become 
slower) 

Upgrade Candi-
dates for SI2

Selected Molecule for SI2

Selected Mole-
cule for SI1

1 2s s
1s

2s
A0

A1

1 2 3

1

2

3

4

4 5

5
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The avoid the drawbacks from 
FSFR we first schedule the 
smallest Molecule from each SI 
(in the Selection sequence) 

Then, each SI has some degree of 
hardware acceleration 
Afterwards we follow the FSFR 
schedule 

Drawbacks: 
Still, the focus is on one SI after the 
other (first for avoiding cISA 
execution, afterwards for upgrading) 

Upgrade Candi-
dates for SI2

1 2s s

A0

A1

1 2 3

1

2

3

4

4 5

5

FSFR

Selected Mole-
cule for SI11s

Selected Molecule for SI22s
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At first, we follow the path from 
ASF (until all cISA executions are 
avoided) 

Afterwards, we determine the 
smallest step (i.e. number of 
additionally required Atoms) to 
upgrade an SI 

Drawbacks 
Still not (explicitly) considering how 
often an SI is expected to execute 
Also not considering how much 
performance benefit a certain upgrade 
may provide 

Upgrade Candi-
dates for SI2

1 2s s

A0

A1

1 2 3

1

2

3

4

4 5

5

FSFR

ASF

Selected Mole-
cule for SI11s

Selected Molecule for SI22s
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For determining the next Molecule that shall be scheduled 
consider the following parameters for a scheduling 
candidate    : 

How often is the corresponding SI executed: 
What is the performance improvement (in cycles per execution) 
compared to the currently fastest available Molecule (i.e. after the 
already scheduled reconfigurations are completed) 
How many additional Atoms are required (Note: ‘additional’ should 
never be zero; Molecules with 0 additional Atoms are removed) 

Calculating the ‘efficiency’: 

For determining the next Molecule that shall be sch

c
he 

if

. ( ) . -
( ) . ( ) . ( )

  i

c g e tS I g e tF a s te s tA v a ila b le M o le
c u le s a g e tL a te n c y c g e tL a te n c y

f
a c

ting the effic
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Calculating the ‘efficiency’ requires a division 
Divisions require many cycles when executed in software or large 
area when implemented in hardware 

Optimized calculation: 
The actual value of the ‘efficiency’ is not required, only the 
Molecule with the best (biggest) efficiency needs to be determined 
Thus, only comparison between two values is required 
 
 
 
 
 
 
Store a·b separately to reuse it for the comparisons 

Calculating the ‘efficiency’ requires a division

epar

((a·b)/c > (d·e)/f 
 
 

(a·b)·f > (d·e)·c 
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DCT Execution MC Execution SATD Execution SAD Execution 
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Decode Reconf.
Sequence

Prediction

Selection

Replacing

Core Pipeline
Status / Control

Execution
Control

Instruction

Run-time
System

Instruction
Memory

Monitoring

Reconfigurable HW

Details can 
be found in 
[BSH09] 
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Whenever all Atom Containers in the reconfigurable fabric are 
utilized and a new Atom shall be reconfigured (due to Selection 
and Scheduling) then an existing Atom needs to be replaced 
This Atom may be required again (as typically the different hot 
spots of the application are executed in a loop) 
We should avoid replacing those Atoms that are required soon 
Optimal solution for memory pages (aka Bélády's replacement): 
replace that page that is not required for the longest time 

Drawback: future knowledge required 
Actual Atom usage is hard to predict due to Atom sharing and as it 
depends on the Selection 
Even if future knowledge would be available, Bélády's replacement would 
not be optimal for Atom replacement. Difference: memory pages are really 
‘required’ and the system has to be stalled until they are fetched; Atoms 
are not required, they just speed up the computation
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Policy Description Examined 
Information 

LRU Least Recently Used When was it 
used? MRU Most Recently Used 

LFU Least Frequently Used How often 
was it used? MFU Most Frequently Used 

FIFO First In First Out 

When was 
it reconfi-
gured? 

LIFO Last In First Out

Second 
Chance 

/ 
Clock 

Extension of FIFO:  Each Atom in the queue 
has a flag that is set when it is used. When an 
Atom shall be replaced (according the FIFO 
policy) but the flag is set, it gets a second 
chance, i.e. its flag is cleared and it is moved 
to the beginning of the FIFO queue (as if it 
were new). ‘Clock’ is a different implemen-
tation of the same policy. 
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Motion Estimation (ME)

• SAD: Sum of Absolute Differences
• SATD: Sum of Absolute (Hadamard-) 

Transformed Differences

Encoding Engine (EE)

• DCT: Discrete Cosine Transformation
• HT: Hadamard Transformation
• Intra-Frame Prediction, Motion 

Compensation, …

Loop 
Filter 
(LF)

~ 55% ~ 35%

Computational 
Kernels

Typical Time Budget
(33 ms 30 fps)

SIs:

~ 10%

Critical 
replacement 

decision 
point

Policy Replaced Atoms when prefetching for LF Demanded for SIs
LRU Parallel Difference Computation and Accumulation SAD, SATD
MRU Transformation SATD, DCT, HT

Note:
• Execution time of LF is rather short not all Atoms replaced
• ME and EE share Atoms (e.g. Hadamard Transformation for SATD and HT)
• It is crucial to avoid replacing the Atoms demanded by ME when prefetching for LF
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Atoms

SI

Molecules (0,0,0,0) 319 cycles
(0,0,1,0) 261 cycles
(0,0,1,1) 173 cycles
(0,1,1,1) 93 cycles
(1,1,1,1) 31 cycles
(1,2,2,2) 27 cycles
…

(0,0,0,0) 201 cycles
(0,0,1,0) 174 cycles
(0,0,1,1) 16 cycles
(0,0,2,2) 11 cycles
…

(0,0,0,0) 67 cycles
(0,0,0,1) 2 cycles

demands 
(multiple)

has 
(multiple)

QSubSAV: Sum of 
Absolute Values

Byte 
Packing

Hadamard 
Transformation

SATD: Sum of 
Absolute 

Hadamard-Trans-
formed Differences

HT4x4: 4x4 
Hadamard 

Transformation

HT2x2: 2x2 
Hadamard 

Transformation
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Depending on the replaced Atoms, all SIs might be 
affected 

Some Atoms are critical for the performance and thus should not 
be replaced 

This is independent of history-based matters, e.g. ‘when’ 
they were reconfigured, ‘how often’ they were used etc. 

(0,2,1,1)
SATD: 93 cycles

4x4 HT:16 cycles

2x2 HT: 2 cycles

(0,2,1,0)
SATD: 261 cycles
4x4 HT:174 cycles
2x2 HT: 67 cycles

(0,1,1,1)
SATD: 93 cycles
4x4 HT: 16 cycles
2x2 HT: 2 cycles
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Some Atoms are selected to implement SIs 
 

Some Atoms are currently available 
 

Some Atoms need to be reconfigured (prefetching selected them 
but they are currently not available) 

 

Some Atoms are replacement candidates (they are available but 
prefetching did not select them) 

Next: determine the Atom that leads to the minimum 
performance degradation, accumulated over all SIs: MinDeg 

0 1: , . . . , ns s s

0 1: , . . . , na a a
y

s a

:c a s
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1,1,1,11, 2 , 0 ,11, 2 ,1, 0

0 ,1, 0 , 00 , 0 ,1, 00 , 0 , 0 ,1(0,0,0,0) 319 cycles 
(0,0,1,0) 261 cycles 
(0,0,1,1) 173 cycles 
(0,1,1,1) 93 cycles 
(1,1,1,1) 31 cycles 
(1,2,2,2) 27 cycles 
…… 

(0,0,0,0) 201 cycles 
(0,0,1,0) 174 cycles 
(0,0,1,1) 16 cycles 
(0,0,2,2) 11 cycles 
… 

(0,0,0,0) 67 cycles 
(0,0,0,1) 2 cycles 

QSub SAV: Sum of 
Absolute Values 

Byte 
Packing

Hadamard 
Transformation 

SATD: Sum of 
Absolute 

Hadamard-Trans-
formed Differences

HT4x4: 4x4 
Hadamard 

Transformation 

HT2x2: 2x2 
Hadamard 

Transformation 

Available 
Atoms 
 
Replacement 
Candidates 
 
Candidate: 
 
Afterwards 
available Atoms 
 

: 1, 2 ,1,1a

: 0 , 2 ,1,1c

(0,0,0,1) 261+174+67=502 cycles 
(0,0,1,0) 319+201+67=587 cycles 
(0,1,0,0)   31+  16+  2=  49  cycles
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When a rather small 
reconfigurable fabric is 
available, then often all 
Atoms need to be 
replaced (minor impact 
of replacement policy) 
When a rather large 
fabric is available, then 
all ever-demanded 
Atoms might fit to the 
fabric at the same time 
(minor impact of 
replacement function) 
In between, MinDeg 
provides the best 
performance 
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Reconfiguration Bandwidth: 10 MB/s

Here, MinDeg achieves up to 
1.61x speedup in comparison to 

the closest competitor

Ex
ec

ut
io

n 
Ti

m
e 

[M
ill

io
n 

Cy
cl

es
]

LIFO
LFU
LRU
2nd Chance

FIFO
MFU
MRU
Our MinDeg



M. Damschen, KIT, 2016 - 57 - 

Decode Reconf.
Sequence

Prediction

Selection

Replacing

Core Pipeline
Status / Control

Execution
Control

Instruction

Run-time
System

Instruction
Memory

Monitoring

Reconfigurable HW

Details can 
be found in 
[BSH08a] 
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Memory Controller

…

…

At
om
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In addition to the reconfigurable Atom Containers, there are 
several non-reconfigurable components connected to the bus 

Load/Store Units (LSU), Address Generation Units (AGU), and Repack (Byte-
wise rearrangement of data) 

M. Damschen, KIT, 2016 
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AGU initialization 
Baseaddress, Stride, Span, 
Skip 
Based on parameters of SI 
(constants or from register 
file) 

4 AGUs can be used to 
describe 4 different 
memory streams 

e.g. reading from two different 
arrays and writing to two 
different arrays 

Each AGU pre-computes 
the ‘next’ and the ‘next 
next’ address 

required to feed both LSUs at 
the same time (e.g. using both 
LSUs to read only one memory 
stream) 

Base Address

… …

2-D Array of data

2-D Sub-array of 
demanded data

Representation of 
data in memory

stride=1

span=3

skip=6

… …

stride=8

skip=-15span=3

Alternative: process the data vertical first
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Xilinx Virtex-4 LX 160 on Silica/Avnet Board 
Audio/Video Module, CF-Card, Touch-Screen LCD 
SDRAM, DDR-DRAM, SRAM, Reconfiguration EEPROM 
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Periphery IP-Core for 
Video-In and Video-Out.

Bus Connectors and 
static Repack Atoms

Leon2 
core

Atom Containers

I2C Peri-
phery

ICAP 
Controller

Memory 
Controller

MicroBlaze (for run-time 
system) and Peripherals

LSU 1
LSU 0

AGUsBus 
Macros
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src: [BSH08c] 
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src: [BSKH08] 
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Application Speedup compared to Leon-only 
Depending on number of available Atom Containers (in 
simulation up to 20) 

Min Avg Max 

H.264 Video Encoder 1.11x 15.80x 22.21x 

SUSAN Image Processing 1.22x 14.48x 15.99x 

SHA 6.10x 6.44x 6.45x 

ADPCM Encoder 1.17x 5.00x 5.16x 

JPEG Decoder 1.23x 3.31x 3.79x 
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Novel hierarchical Special Instruction composition, 
enabling different performance-area trade-offs 
RISPP provides very high adaptivity that is demanded for 
changing control flow (e.g. depending on input data) 
Solved the reconfiguration overhead problem by upgrading 
the SIs 
Evaluated using simulations and FPGA-based prototype 
Conservative Comparison with state-of-the-art 

Comparison with ASIP: up to 3.06x faster 
Comparison with Molen: up to 2.38x faster 
Comparison with Proteus: up to 7.19x faster 
Compared to Leon 2 GPP: up to 26.6x faster 
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Institut für Technische Informatik 
Chair for Embedded Systems - Prof. Dr. J. Henkel 
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Fine-grained loosely-coupled Coprocessor 
No compiler required; works on standard 
binaries 
Detects application hot spots during runtime 
Re-implements hot spots as Special 
Instructions 

 Online Synthesis 

Developed special FPGA fabric and special 
place & route tools for online synthesis 
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src: [LSV06] 

M. Damschen, KIT, 2016 
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Typically, the critical kernels correspond to 
frequently executed (inner) loops 
Characteristic of inner loops: ends with a short 
backward branch (sbb) targeting the beginning of 
the loop 

‘short’ means: small offset compared to current 
instruction memory address 

Generally unknown how many different inner 
loops exist 

 use a Cache architecture to track the most important 
ones (i.e. those with the highest execution frequency) 
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On a miss in that cache (currently unknown sbb 
needs to be stored) replace the least frequently 
used sbb (loss of accuracy) 
On overflow in any counter halve all values (shift) 

Emphasizes on recent sbb activities 
Loss of accuracy; but critical kernels still can be detected 
Halving is done 
as a feature of 
the cache either 
parallel(area) or 
sequential (la- 
tency overhead) 

src: [GV03] 
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The Cache Controller can detect sbb instructions automa-
tically by partially decoding the executed instruction 
Non-intrusive System ( P not modified) 

Important for real-time systems where changes in execution 
behavior could significantly affect the guarantees 
Additionally minimizes the impact on current tool chains, e.g. 
avoids special compilers or binary modification tools 

Extension: Coalescing 
When the inner loop executes several times, the cache controller in 
the online monitoring is very active in reading, incrementing, 
writing the cache  high power consumption 
Instead: count all executions of one inner loop separately and 
whenever another loop executes, then update the cache once 

Th C h C ll d bb i i
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CChallenges: The online synthesis (CAD tool) needs to execute 
online while the user application is running 

Typically CAD tools executes offline on a powerful workstation 
Demanding high memory (GB) and computational resources (minutes 
to hours to implement accelerators) 

Simplification: Warp targets seldom-changing, long-running 
applications 

It may be acceptable to spend seconds to minutes for online synthesis 
after the application started (once!), if it runs faster afterwards 
Limits the adaptivity during application execution while maintaining a 
high flexibility to accelerate any type of application 

But: memory problem remains (time is available if you are 
willing to wait; gigabytes of memory are not) 
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Simplified FPGA 
Smaller LUTs (3-input LUTs; state-of-the-art FPGAs have 
4-6 input LUTs)  simplified Mapping and Placement 
Less LUTs per CLB  simplified Mapping and Placement 
Fixed routing inside a CLB  simplified Placement and 
Routing 
Simplified Switching Matrices (less connections per 
Switching Matrix and no connection to distant Switching 
Matrices)  simplified Placement and Routing 

Simplified algorithms 
Nearly all algorithms (Mapping, Placement, and Routing) are 
greedy heuristics that do not achieve the quality (e.g. area 
and latency) of state-of-the-art algorithms 

Together: Trading-off quality vs. runtime overhead 

Si lifi d FPGA
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Contains several hard-wired elements in addition 
to the actual FPGA 

Access to memory via Data Address Generator (DADG) 
Loop Control Hardware (LCH) 
Input/Output registers 
Dedicated Multiply 
Accumulate unit (MAC)

The core pipeline is 
stalled during SI
execution

No cache coherency/ 
consistency issues 
Not really co-processor 

src: [LSV06] 
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src: [LVT05] 

Simple Configurable Logic Fabric 
CLBs are surrounded by Switching Matrices (SMs) 
Each CLB connected to a single SM 
SMs are intercon- 
nected to nearest 
neighbors (short
channels) and to 
second nearest 
neighbors (long 
channels; dashed 
lines) in horizontal
and vertical direction 
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CLB contains two 3-input/2-output LUTs with 
optional registers at the outputs 

Provides a trade-off 
between area and delay 

Simple and regular 
structure simplifies 
mapping and 
placement 

src: [LVT05] 
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src: [LVT05] 

4 short channels and 4 long channels (L) per direction 
A channel i  can only connect 
to the same channel i  at one
of the 3 other directions
(using the diamonds 
as connectors) 
Additionally the short 
and the long channels 
of the same channel 
number i  can be con- 
nected (using the circles) 
Simplifies the routing 
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DDecompilation: converts binary 
into a high-level representation 
(e.g. control/data-flow graph) 
Partitioning: selecting critical 
kernels 
High-level synthesis: create 
netlist (Boolean expressions) 
Low-level synthesis (FPGA 
compilation): FPGA specific place 
and route 
Binary updater: Actually use the 
new hardware

src: [LSV06] 



M. Damschen, KIT, 2016 - 82 - 
src: [LSV06] 

Problem: application binary is not aware 
of the Special Instruction (due to online 
synthesis) 
But: old code is no longer required 

 may be overwritten 
Solution: 
1. Replace first instruction of old code with a 

jump to a new hardware initialization 
handler 

2. This handler prepares & calls the hardware 
of the Special Instruction and stalls the CPU 
pipeline 

3. When the Special Instruction completes, 
the handler jumps to the instruction that 
follows the last instruction of the old 
code 
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src: [LSV06] 

Logic Synthesis: simplified logic minimizer 
Technology Mapping: represent logic 
as FPGA-specific LUTs and pack 
multiple LUTs into CLBs 
Placement: Bind the created 
CLB-nodes (of the graph/ 
netlist) to actual CLBs on 
the FPGA such that com- 
munication partners are 
placed near to each other 
Routing: Connect communication partners 
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src: [LVT05] 

Simplified routing resource 
graph 

Goal: saving memory 
Two connection types for long 
and short routing channels 
Connections annotated with costs 

Top-down approach: greedy 
assignment of edges to 
connections  

Connections contain the actual 
routing channels 
The first step does not assign 
edges to channels but only 
counts whether sufficient 
channels would be available 
Adjust the routing cost for 
overutilized connections 
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src: [LVT05] 

Second step: detailed routing, 
i.e. assigning edges to 
channels 
Based on a conflict graph 

Two edges of the routing graph 
conflict when both routes pass 
through the same switching 
matrix 
The routes (edges) in the routing 
graph become nodes in the 
conflict graph that are connected 
if they have a conflict 

Solved by graph coloring
Ensuring that two connected 
nodes have different colors 
(corresponds to different 
channel assignments) 



M. Damschen, KIT, 2016 - 86 - 

Comparing 
scalability with 
a standard 
router (VPR) in 
normal mode 
and in fast 
mode 

Executed on 
a 1.6 GHz 
Pentium 

Routing diffe-
rent algorithms 
for a 100x100 
CLB array 

Note: low array 
utilization! 

src: [LVT05] 
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Significantly reduced memory requirements (at most 8 MB; 
allows for execution on embedded CPUs) 
Slower critical path (30%) 

Not clear, how it would perform for higher FPGA utilization 

src: [LVT05] 
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No effort for Application developers 
Works on existing application binaries 

High speedup possible for small kernels (after online synthesis is 
completed) 
But: some applications are hard to optimize 

Code is not restructured by Warp tools to separate between HW-accelerated parts and 
software parts 
Interface must be derived automatically 

Optimization takes rather long due to online synthesis 
From seconds to minutes for the router running on a 1.6 GHz Pentium and 
correspondingly longer on an embedded ARM (i.e. the actual target on which they 
wanted to execute their online synthesis) 

Altogether: interesting approach that demonstrates high flexibility 
(targeting different applications but not within an application or across 
multiple applications) and that provides a new trade-off between 
flexibility, programmer/compiler effort, and efficiency 
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Institut für Technische Informatik 
Chair for Embedded Systems - Prof. Dr. J. Henkel 
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Tightly-coupled coarse-grained architecture 

No compiler required; works on standard 
binaries 

On-the-fly online-synthesis 
i.e. no lengthy synthesis algorithms 
creation of the Special Instructions during 
execution of the original instructions 

Caching of the created SIs 
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Starts on the first instruction after a branch 
Stops when it detects an unsupported instruction or 
another branch (unless ‘speculative execution’ is 
supported, i.e. speculating on the branch) 
In between: each executed instruction is placed on 
the reconfigurable array 

Creating a configuration on-the-fly and extending it by 
each executed assembler instruction
Using several temporary tables to manage utilized 
resources, data dependencies etc. 

If more than three instructions were found, the 
created configuration is cached 
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First time a hot spot (dark grey) is executed, it is 
translated into a configuration, i.e. SI 

It is not necessarily known, that it is a hot spot; but ‘hotter’ spots 
have a higher chance to remain in the cache 

For subsequent executions, the cached configuration is 
loaded and exe- 
cuted 

src: [BRGC08] 

M. Damschen, KIT, 2016 



M. Damschen, KIT, 2016 - 93 - 
src: [RBC08] 

M. Damschen, KIT, 2016 
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The array is composed of different building blocks 
ALUs, Load/Store Units, Multipliers 

Lines of these building blocks are connected to 
subsequent lines, using multiplexers 

Note: the previous example does not necessarily have 18 
physical lines; it rather has 3 physical lines; Line 4 reuses 
the hardware of Line 1 
But: configuration memory for all lines is needed to switch 
the configuration while the Special Instruction executes 

At design time, different (application specific) 
reconfigurable fabrics can be composed 

The array is composed of different building blocks
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Creating the configuration step-by-step 

Considering dependencies 

dst- 
reg 

src: [RBC08] 



M. Damschen, KIT, 2016 - 96 - src: [BRGC08] - 96 - 

Average Speedup for different Configurations of 
the reconfigurable array and dif- 
ferent Cache sizes for 
the configuration data 
“Ideal” assumes infinite 
hardware 
“Specula- 
tion” al- 
lows spe- 
culative 
execution 

M. Damschen, KIT, 2016 
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Efficient way to support online synthesis on-
the-fly 
Moderate speedups 

Also depends on how the compiler schedules the 
code 
Limited room for optimizations when creating a 
configuration on-the-fly 

Application-specific reconfigurable fabrics 
provide higher speedup for the targeted 
application at the cost of reduced generality 
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Application I - 
Domain 1 

Application II - 
Domain 1 

RISC1 CI 21 

CI 11 

RISC2 

CI12 

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation 
and Test in Europe Conference (DATE), pp. 819-824, 2009. and Test i

L. Bauer, KIT, 2015 
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Application I - 
Domain 1 

Application II - 
Domain 1 

CI 21 

CI 11 

RISC2 

CI12 

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation 
and Test in Europe Conference (DATE), pp. 819-824, 2009. 
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Application - 
Domain 2 
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Application - 
Domain 2 
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Hypermorphism: 
Dynamically combining the 

reconfigurable modules to realize 
different ISAs as well as Custom 

Instructions (CIs) upon application 
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Set Multigrained Array 
 

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation 
and Test in Europe Conference (DATE), pp. 819-824, 2009. 
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Dedicated fabric share per core, e.g. 
[Watkins@MICRO10] 
Reduced reconfigurable area and memory 
bandwidth per core 
PProblem: No adaption to dynamic 
workloads 

Shared reconfigurable fabric, e.g. 
[Chen@DAC11] 
Problem: Only 1 kernel can be run 
on the fabric at any time 
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Prerequisite: 
Set of fabric rresources used by current primary and remote Op 
must be ddisjoint 

primary Op remote Op 

MSB LSB 

Fabric resource 
in use by Op 

merged Op 
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Prerequisite: 
Set of fabric rresources used by current primary and remote Op 
must be ddisjoint 

Conflict between Ops  merging not possible 

primary Op remote Op 

Conflict between primary 
and remote Op  
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Primary SI Remote SI 

Op for fabric configuration 
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5 
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Execution time for both SIs: 6 cycles

conflict detected 
 stall remote 

conflict detected 
 stall remote 
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1.3x faster on Remote 
cores or 3.1x faster on 
Primary core compared to 
state-of-the-art 
approaches 
Overhead: 

Size ~ 1/3 of size of LEON-3 

COREFAB Spatial-Partitioning 
[Watkins@MICRO10] 

Reconf-Base Shared Fabric 
[Chen@DAC11] 

Component LUT BRAM 
FAM 98 0 
SI Merger 1133 0 
Remote-SI mem 187 14 
Total 1418 14 

M. Damschen, KIT, 2016 
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Demand: Many systems are multi-tasking systems anyway 
Optimization: Performance loss until reconfiguration of 
accelerators finished (range of milliseconds) 
Example: H.264 video encoder processes 1 frame 

Encoding Motion Estimation 
Deblocking 

Filter 

Gray Bars: Cycle loss 
due to unavailable 
accelerators (com-
pared to optimistic 
zero-cycle reconfi-
guration latency) 

If it were zero, the 
frame would have 
been processed 
1.35x faster 

M. Damschen, KIT, 2016 
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t=0ms 5ms 10ms 15ms 20ms 25ms 

T1 

T2 

Task TT1: Deadline: 10ms 
 Kernel 1: • Software: 10ms 
 
 
 Kernel 2: • Software: 6ms 
 
 
Task TT2: Deadline: 8ms 
 Kernel 1: • Software: 5ms 

Kernel 1 Kernel 2 



M. Damschen, KIT, 2016 - 119 - 

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms 

T1 

T2 

Pi

Task TT1: Deadline: 10ms 
 Kernel 1: • Software: 10ms 
  • After 2ms reconf: 5ms (2x faster) 
  • After 4ms reconf: 2.5ms (4x faster) 
 Kernel 2: • Software: 6ms 
  • After 3ms reconf: 1ms (6x faster) 
 
Task TT2: Deadline: 8ms 
 Kernel 1: • Software: 5ms 



M. Damschen, KIT, 2016 - 120 - 

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms 

T1 

T2 

Pi

Task TT1: Deadline: 10ms 
 Kernel 1: • Software: 10ms 
  • After 2ms reconf: 5ms (2x faster) 
  • After 4ms reconf: 2.5ms (4x faster) 
 Kernel 2: • Software: 6ms 
  • After 3ms reconf: 1ms (6x faster) 
 
Task TT2: Deadline: 8ms 
 Kernel 1: • Software: 5ms 



M. Damschen, KIT, 2016 - 121 - 

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms 

T1 

T2 

Pi

Task TT1: Deadline: 10ms 
 Kernel 1: • Software: 10ms 
  • After 2ms reconf: 5ms (2x faster) 
  • After 4ms reconf: 2.5ms (4x faster) 
 Kernel 2: • Software: 6ms 
  • After 3ms reconf: 1ms (6x faster) 
 
Task TT2: Deadline: 8ms 
 Kernel 1: • Software: 5ms 



M. Damschen, KIT, 2016 - 122 - 

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=25ms 30ms 35ms 40ms 45ms 

T1 

T2 

Pi

Task TT1: Deadline: 10ms 
 Kernel 1: • Software: 10ms 
  • After 2ms reconf: 5ms (2x faster) 
  • After 4ms reconf: 2.5ms (4x faster) 
 Kernel 2: • Software: 6ms 
  • After 3ms reconf: 1ms (6x faster) 
 
Task TT2: Deadline: 8ms 
 Kernel 1: • Software: 5ms 



M. Damschen, KIT, 2016 - 123 - 

Scheduler needs to consider that tasks have different 
Performance Levels that change over time 

Try to exploit high performance levels, i.e. schedule those tasks 
Try to avoid low performance levels, i.e. do not schedule those 
tasks 

Keep the reconfiguration port busy 
If a task that is known to use Special Instructions did not issue a 
reconfiguration request (for the next kernel) yet, then schedule it 
Reason: it will not increase its performance level until it at least 
issues a reconfiguration request 

Additionally: consider the soft deadlines of tasks 
Even if a task has a low performance level, it might need to be 
scheduled to meet its deadline 



M. Damschen, KIT, 2016 - 124 - 

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms 

T1 

T2 

2x 4x 2x 4x 4x 

Pi

Task TT1: Deadline: 10ms 
 Kernel 1: • Software: 10ms 
  • After 2ms reconf: 5ms (2x faster) 
  • After 4ms reconf: 2.5ms (4x faster) 
 Kernel 2: • Software: 6ms 
  • After 3ms reconf: 1ms (6x faster) 
 
Task TT2: Deadline: 8ms 
 Kernel 1: • Software: 5ms 



M. Damschen, KIT, 2016 - 125 - 

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=25ms 30ms 35ms 40ms 45ms 

T1 

T2 

The other schedule finished here 

Pi

Task TT1: Deadline: 10ms 
 Kernel 1: • Software: 10ms 
  • After 2ms reconf: 5ms (2x faster) 
  • After 4ms reconf: 2.5ms (4x faster) 
 Kernel 2: • Software: 6ms 
  • After 3ms reconf: 1ms (6x faster) 
 
Task TT2: Deadline: 8ms 
 Kernel 1: • Software: 5ms 



M. Damschen, KIT, 2016 - 126 - 

To calculate the Performance Level  [0,1] for Task T  
that executes Kernel K at time t  we consider: 

Which accelerators are requested for Kernel K 
How many accelerators are attained at time t 

 Calculate the average latency of the Special Instructions 
given the currently available accelerators compared to the 
latency after all requested accelerators are available 
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NNRQ: Not Released Queue – these tasks cannot be 
scheduled, as the previous job (if any) has 
completed and the next job is not released yet 

LPQ: Low Performance Queue – tasks can be scheduled 
but they would run at a reduced Performance Level 
due to not yet reconfigured accelerators 

FPQ: Full Performance Queue – these tasks can be 
scheduled and all requested accelerators are 
available 

(Re-)assigning tasks to queues is managed
at context switch 
when a reconfiguration completes 
when a task requests different accelerators 
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Reconfigurable Fabric size [# RPUs] 
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PPATS: Performance Aware Task 
Scheduler 

Def. System Tardiness: Sum of all times 
that jobs finished too late 
Outperforms the other scheduler in 
nearly all cases 
Only in rare cases slightly beaten by EDF 
Sometimes RR is the closest competitor, 
sometimes the worst performer 
PATS is on average 1.92x, 1.29x and 
1.14x faster than RMS, EDF, and RR, 
respectively 

MORP: Makespan Optimization for 
Reconfigurable Processors 

Def. Makespan: Time until all 
concurrently started tasks of a task set 
are completed 
Hybrid task-scheduling and area-
allocation approach 
Makespans are only 5.8% (mean) worse 
than upper bound 
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