
Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

Marvin Damschen, Lars Bauer, Jörg Henkel

Vorlesung im SS 2016

- 1 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 2 -

7. Adaptive Reconfigurable Processors

M. Damschen, KIT, 2016 - 3 -

1. Introduction

3. Special Instructions

6. Coarse-Grained
Reconfigurable Processors

8. Fault-tolerance
by Reconfiguration

2. Overview

4. Fine-Grained
Reconfigurable Processors

7. Adaptive
Reconfigurable Processors

5. Configuration Prefetching

• RISPP
• WARP
• Dynamic Instruction
Merging (DIM)

• Further relevant
architectures /
domains

- 4 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

M. Damschen, KIT, 2016 - 5 -

Developed at CES, KIT

Tightly-coupled fine-grained reconfigurable
fabric

Introduces and implements modular SIs
Provide different performance/area trade-offs at runtime

Realizes high runtime adaptivity, i.e. a runtime
system decides which reconfigurations shall be
performed and when they shall be performed

M. Damschen, KIT, 2016 - 6 -

Some parts were already introduced as case-study in
previous lectures
Instruction Format (up to 4 read and 2 write registers,
immediate values, 10-bit virtual opcode)
Using the core ISA (cISA) to implement SIs when their
reconfiguration is not completed yet (trap handler)
Special Instructions have access to main memory and to a
fast on-chip scratch-pad memory

Using two independent 128-bit ports
Pipeline stalls when SI executes in hardware

Dynamic Prefetching (called ‘Forecasting’) using weighted
error-back propagation

M. Damschen, KIT, 2016 - 7 -

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

…

…

Memory
Arbiter

Co
re

 P
ip

el
in

e

Data Cache Off-Chip
Memory

On-chip Memory

IF

ID

MEM

WB

EXE

32 32

32

128

128

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

Load /
Store Units

Intercon-
nect

128 128

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

System
Bus

32

ICAP

VGA

…

Legend:
Added
parts

M. Damschen, KIT, 2016 - 8 -

Partition the reconfi-
gurable fabric into so-
called SI Containers

aka ‘Reconfigurable
Functional Unit’

An SI may be loaded
into any free Container
Problems:

Relatively long reconfi-
guration time
Limited Resource Sharing
Fragmentation (not the
entire available space
may be usable)

Partition the reconf

Co
re

 P
ip

el
in

e
Co

re
 P

ip
el

in
e

Legend:
Special Instruction

Container (SIC):
Reconfigu-
rable area:

Core Pipeline
(scaled down):

Corresponds to
OneChip, Chimaera,
Proteus, …

M. Damschen, KIT, 2016 - 9 -

0

5

10

15

20

25

30

35
No cISA exec.

With cISA exec.

With cISA exec. & smaller SIs

With cISA exec. & upgrades

#A
cc

um
ul

at
ed

 S
I

Ex
ec

ut
io

ns
 (i

n
th

ou
sa

nd
s)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Execution Time [Million cycles]

All 31,977 SI executions
completed

RISPP’s
modular SIs

src: [BSH08a]

M. Damschen, KIT, 2016 - 10 -

X00

X30

X10

X20 Y20

Y00

Y10

Y30

>> 1

>> 1

>> 1

>> 1++

+
+

<< 1

<< 1

DCT HT

Definition Atom:
A computational data path
Smallest block that can be reconfigured (‘atomic’ in that
sense)

Example: Transform Atom

Definition Atom:

M. Damschen, KIT, 2016 - 11 -

Definition Special Instruction:
An assembly instruction
Dataflow graph of Atoms

Example: Sum of Absolute
Transformed Differences (SATD)

Definition Special Instruction: Example: Sum of Absolute

MMM.M.M.M.MM.M.. DaDaDaDaDaDaDaDaDaamsmsmsmsmsmsmsmsmmsschchchchchchchchchchc enenenenenenenenene ,,,,,,,, KIKIKIKIKIKIKIKKIKITTTT,T,T,T,T,TT,,, 202020202020202020201616161616161616166 - 111 --

g p

INPUT: OUTPUT:DCT=0

QSub SAV (Sum of
Absolute Values)

+

+
+

Repack Transform

HT=0 DCT=0 HT=1

M. Damschen, KIT, 2016 - 12 -

Definition Molecule:
Implementation of an SI
Using the available (i.e. at that time

reconfigured) Atoms
Similar to HLS scheduling after
allocating a certain number of Atoms

Definition Molecule: reconfigured) Atoms

MMMMM.M.M.M.M.M. DaDaDaDDaDaDaDaDaDamsmsmsmssmsmmsmsmsmschchchchchchchchchcheneneneneneneenenenen,,,,,, KIKIKIKIKIKIKIKIKIKITTTTT,T,T,T,T,T,,, 20202020202020020202016161616161616161616 - 122222 --

g (

+

+

+

Repack (2 instances) Transform (2 instances)

1716151413121110

SAV (2 instances)

M. Damschen, KIT, 2016 - 13 -

SI A SI B SI C

A1 A2 A3 AcISA

1 22

Atom 2Atom 1

B1 B2 BcISA C1 CcISA

Atom 3

1 2

C2

SPECIAL IN-
STRUCTIONS
(SIs)

MOLECULES

ATOMS
2
11

1
1

2

Atom 4 Atom 6Atom 5

1 2 1
22

11
2

(the numbers
denote: #Atom-
instances requi-
red for this
Molecule)

1

(an SI can be
implemented
by any of its
Molecules)

For each SI there are different
implementations (Molecules)

There is one Molecule that does not
need any Atom (Software
Implementation with core-ISA: cISA)

Atoms can be shared among different
Molecules and SIs

Implementation of a particular SI
can be gradually upgraded by
loading more Atoms

SI A SI B SI CSPECIAL IN-

M. Damschen, KIT, 2016 - 14 -

Co
re

 P
ip

el
in

e

Multiple SIs may share common Atoms
There is no predetermined maximum of supported SIs
But: it is not possible/easy to execute two SIs at the same time
(as they are no longer independent)

Not necessarily a problem, see Molen (single controller unit) and
OneChip (memory coherency problems)

SIs can be upgraded (step-by-step by loading more Atoms)

SI Containers

Co
re

 P
ip

el
in

e

Atom Containers

M. Damschen, KIT, 2016 - 15 -

SI Molecules: Performance vs. Reconfigurable Resources

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Hardware Resources [Atom Containers]

Ex
ec

ut
io

n
Ti

m
e

[C
yc

le
s] IPred VDC 16x16 (I-MB)

IPred HDC 16x16 (I-MB)

MC Hz 4 (P-MB)

max

Area requirements
[# loaded Atoms]

0

5

10

M. Damschen, KIT, 2016 - 16 -

Concept improves the efficiency and flexibility
Atom sharing
Reduced fragmentation
Reduced reconfiguration overhead (due to SI upgrading)

Decision how many Atom Containers shall be
spend for which SI can be adapted at runtime

However, this adaptivity demands a runtime
system that determines the decision and that
implies overhead (to execute it)

M. Damschen, KIT, 2016 - 17 -

Decode Reconf.
Sequence

Prediction

Selection

Replacing

Core Pipeline
Status / Control

Execution
Control

Instruction

Run-time
System

Instruction
Memory

Monitoring

Reconfigurable HW

M. Damschen, KIT, 2016 - 18 -

Decode: detects SIs and Forecasts (for prefetching) and sends
them to the execution controls (only SIs) and Monitoring (SIs and
Forecasts)
Execution Control: executes SIs by determining their fastest
currently available Molecule (state is maintained in a look-up
table) and triggers the hardware execution (using the Atoms) or
the software emulation (using the trap handler)
Monitoring: Counts the executions for each SI
Prediction: Fine-tunes the Forecasts (recall: dynamic prefetching;
see below) and resets the monitoring values

Decode: detects SIs and Forecasts (for prefetching) an

PME

P: Prefetching Point EE: Encoding Engine
ME: Motion Estimation LF: Loop Filter

ME PEE EE PLF LF PME ME PEE EE

M. Damschen, KIT, 2016 - 19 -

Selection: Select Molecules to implement the
forecasted SIs
Reconfiguration Sequence Scheduling:
Determine the reconfiguration sequence of
the Atoms that are required to implement the
selected Molecules
Replacing: Determines, which currently
configured Atom shall be replaced by a new
Atom that is scheduled to be reconfigured

M. Damschen, KIT, 2016 - 20 -

Representing the
Molecules as a
vector of Atoms

The example only
shows 2 Atom Types
(A0 and A1), thus each
vector has 2 entries;
in general: n

Basic operators
How many Atoms are
needed for a Molecule
Which Atoms have
two Molecules in
common
Which Atoms are
needed to fulfill the
demands of two
Molecules# Instances of Atom A0

Instances of Atom A1

1 2 3

1

2

3

4

4 5

5

6

1, 4
5

o
o

1 4o 1, 4
5

o
o

5, 2
7

p
p

5 2p 5, 2
7

p
p

1, 2
3

x o p
x

1 2x o p
3

x o p
x

o po

 5, 4
9

y o p

y

y o po
5, 4
9y

M. Damschen, KIT, 2016 - 21 -

Upgrade operator o p :
Given the Atoms of o, which additional Atoms are needed
to implement p
Similarly, the without operator: p / o := o p

Instances
of Atom A0

Instances of Atom A1

1 2 3

1

2

3

4

4

5

1 3, 2o 3 2o

4, 4p 4 4p

1 1, 2o p 2o 1, 2p 1 2p

Instances
of Atom A0

Instances of Atom A1

1 2 3

1

2

3

4

4 5

5

6

4, 4p 4 4p

2 6, 1o 6 1o

2 0, 3o p 3o 0, p 0p

omitted ‘nega-
tive’ upgrade

M. Damschen, KIT, 2016 - 22 -

A relation can be
used to compare
Molecules with
each other

Not all Molecules
can be compared,
e.g. o4 and o6

The relation has
a infimum and a
supremum

Actually it is a
complete lattice
(vollständiger
Verband)

A relation ca

Instances of Atom A0

Instances of Atom A1

1 2 3

1

2

3

4

4 5

5

6

1 2 3 4 5 6sup , , , , ,o o o o o oo

1 2 3 4 5 6inf , , , , ,o o o o o oo

6oo

4oo

1oo

2oo 3oo

5oo

Indicates the
relation ‘ ’

M. Damschen, KIT, 2016 - 23 -

Decode Reconf.
Sequence

Prediction

Selection

Replacing

Core Pipeline
Status / Control

Execution
Control

Instruction

Run-time
System

Instruction
Memory

Monitoring

Reconfigurable HW

Details can
be found in
[BSH08b]

M. Damschen, KIT, 2016 - 24 - M. Damschen, KIT, 2016

0

M. Damschen, KIT, 2016 - 25 -

1 2

, , . . .

, , . . . ,

A B

c IS A

S I S I

b b b

, . . . A B, S I S IA ,

i
i

S S I iS I

 : 1ii S S I

x S

x Nx N x

()m ax
S x S

p xp x(

Input to the Selection: requested SIs and their
different Molecules (in the following SIi will
denote one of the requested SIs)

Selection: Choose a subset S of SI
implementations

Constraint: Chose exactly one Molecule per SI

Constraint: Stay within the capacity of the
reconfigurable hardware (N : Number of Atom
Containers)

Optimization goal: maximize the profit (the
profit may denote the speedup compared to
software execution; discussed later)

M. Damschen, KIT, 2016 - 26 -

Similarities to the well-known NP-hard Knapsack Problem Si il i i h ll k NP h d K
Given:

A Knapsack with the
capacity C
Elements E={ei } with weight
w(ei) and profit p(ei)

Task: choose (multiple)
elements such that the
accumulated capacity is
not violated and the
accumulated benefit is
maximal

Weight and benefit are constants
that depend on the capacity (e.g.
volume vs. weight) and the
situation (e.g. for camping a tent
might be more beneficial than a
gold bar), respectively

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 27 -

A0

A1

1

1

x

y x y

3 4 5
x y x y

Differences to Knapsack: the
weight of a Molecule (i.e. the
number of required Atoms to
implement it) is not constant

It depends on the Molecules that
are selected additionally and on
their Atom requirements (due to
Atom sharing between different
SIs)

Instead of accumulating the
individual weights we have to
combine all Implementations
and determine their total
weight
Question: still NP-hard?

K k hDiff

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 28 -

1. Take an arbitrary input of a Knapsack problem, i.e.
capacity C, Elements ei with w(ei) and p(ei)

2. Apply a polynomial-time transformation on the
input such that the transformed input describes a
corresponding Selection problem

3. Solve the transformed input with an optimal solver
for the Selection problem such that the result can
be transformed back into the optimal solution for
the original Knapsack problem

4. Then: ‘Instruction-Set Selection’ is at least as hard
as ‘Knapsack’, i.e. Knapsack p Instruction Set
Selection

1 T k bi i f K

M. Damschen, KIT, 2016 - 29 -

The capacity of the Knapsack determines the number of
Atom Containers, i.e. N:=C
For each Knapsack element ei we create one Atom Type Ai

For each Knapsack element ei we create
one Special Instr. SIi with 2 Molecules
The two Molecules represent the decision
whether or not the element ei should be
packed into the knapsack

Not Packed: Molecule uses no Atoms and has
zero profit
Packed: Molecule uses Atom Type
Ai in a quantity that corresponds
to the weight of the element; the
Molecule profit corresponds to
the element profit

_ _: , i i c IS A i H WS I x x

_

_

_

: 0 , . . . , 0

0

: 0

i c IS A

i c IS A

i c IS A

x

x

p x

_ ,i c IS A

c IS A

_

_

_

: 0 , . . . , 0 , , 0 , . . . , 0

In s ta n c e s o f

:

H W i

i

i H W i

i H W i

x w e

A
x w e
p x p e

. . . , 0 , , 0 , . . . , 0 i. . . , 0 ,

#

iw eH W

M. Damschen, KIT, 2016 - 30 -

This SI structure avoids ‘Atom sharing’ (the main difference
between Knapsack and Selection), as each Atom Type is only
used by one Molecule
The solver for the Instruction Set Selection will select one
Molecule (cISA or Hardware) for each SI (i.e. element)

Selecting the cISA Molecule (with 0 profit and 0 weight) corresponds to not
packing the corresponding element into the Knapsack

Respecting the capacity constraints for the Atom Containers
corresponds to respecting the capacity for the Knapsack
Maximizing the profit for the SIs corresponds to maximizing the
profit for the elements
The optimal solution for the Instruction Set Selection
corresponds to the optimal solution for the Knapsack
Instruction Set Selection is NP-hard

This SI structure avoids ‘Atom sharing’ (the main difference

M. Damschen, KIT, 2016 - 31 -

Instruction Set Selection needs to execute at runtime
Limited resources, e.g. memory and computing time

Typical Heuristic for Knapsack problems: Greedy
Algorithm
1. Calculate a benefit for each element (profit per weight)
2. Sort the benefits in a descending order
3. Initialize the Knapsack to be empty and its currently available

space to its full initial capacity
4. Iterate over all sorted elements (starting with the highest

 benefit):
 IIF the element fits into the Knapsack (considering the
 still available space in it)
 TTHEN greedily add it to the Knapsack and update its still
 available space
 EELSE skip it (i.e. not selected) and continue with the next
 element

M. Damschen, KIT, 2016 - 32 -

This greedy approach cannot be directly used for
Instruction Set Selection

Might choose multiple Molecules per SI
Presorting the Molecules does not work, because the weight (i.e.
number of additionally required Atoms) changes, depending on
which Molecules were previously selected (i.e. which Atoms are
already selected)

Modifications are required to use a greedy approach
After a Molecule was selected we remove the further Molecules
from the same SI
Instead of presorting we have to recalculate the profit
Additionally, instead of using a ‘benefit’ (i.e. profit per weight) we
can directly use our profit values, as they already contain the
reconfiguration time (and thus indirectly the size in form of the
additionally required Atoms) as parameter

This greedy approach cannot be directly used for

M. Damschen, KIT, 2016 - 33 -

At first, we remove all cISA Molecules: Instead of explicitly
selecting them using the greedy algorithm they are afterwards
added for each SI for which no hardware Molecule was selected
Iterate in a loop over all Molecule candidates, calculate their
profit, and remember the Molecule with the highest profit

Whenever a Molecule is too big (i.e. there are insufficient Atom
Containers left to reconfigure its additionally required Atoms) then
remove it from the candidate list

Select the best Molecule Candidate and clean the remaining
candidate list, i.e. remove those Molecules that implement the
same SI
Iterate, till the candidate list is empty

M. Damschen, KIT, 2016 - 34 -

Greedy Algorithm for Knapsack:
n := Total number of Molecules for all requested SIs
Computational complexity: O(n log n) due to sorting
Additional memory: O(n) for storing the sorting result

Greedy Algorithm for Instruction Set Selection:
Computational complexity: O(n2)
(in extreme case each SI has exactly 1 hardware Molecule and all
of them together fit into the capacity

 In each of the O(n) iterations the best Molecule is determined in
O(n) and 1 Molecule is removed)
Additional memory: O(1) (to remember the best Molecule)
Advantage: After O(n) iterations the first Molecule is selected and
reconfiguration may start. While reconfiguration is running, the
next Molecules can be selected. So, even though the
computational complexity is higher, the reaction time is shorter.

Greedy Algorithm for Knapsack:

M. Damschen, KIT, 2016 - 35 -

Constraints describe a ‘valid’ selection;
what should be considered for a ‘good’ selection?
Execution frequency of SIi (more often executed SIs
are more ‘important’)
Performance improvement of a Molecule
in comparison to the cISA performance

Note: denotes the jth Molecule from SIi
Reconfiguration time of the Molecules

Considering ‘how long’ the reconfiguration lasts and ‘when’
the SI is needed (i.e. executed) the first time

Potentially more parameters, but the above para-
meters turned out to be the most important ones

if

i jx
pari

_ . ()

 . ()
i c IS A

ij

x g e tL a ten cy

x g e tL a ten cy
_ c S g e tL a.cIS A

M. Damschen, KIT, 2016 - 36 -

_ . ()

 . ()
 :

m a x 0 ,
. ()

i c IS A

ij

ij i

r e c o n f ij

fir s tE x e c ij

x g e tL a te n c y
L

x g e tL a te n c y
p x f

t x
R

t x g e tS I

Sc IS Ac IS A

jj

Selection factors L and R are used to scale the
parameters

L: Latency Improvement
R: Too long reconfiguration time

M. Damschen, KIT, 2016 - 37 -

For many parameter pairs, Greedy finds the same solution
In some (not relevant) cases, Greedy finds a solution that leads to
a faster execution time Note: optimally solving Selection does
not necessarily lead to the fastest execution time (e.g. due to sub-
optimal prediction/forecasting/scheduling/replacement etc.)

Greedy: Optimal:
Capacity:

5 Atom Container

M. Damschen, KIT, 2016 - 38 -

Decode Reconf.
Sequence

Prediction

Selection

Replacing

Core Pipeline
Status / Control

Execution
Control

Instruction

Run-time
System

Instruction
Memory

Monitoring

Reconfigurable HW

Details can
be found in
[BSKH08]

M. Damschen, KIT, 2016 - 39 -

After Selection, we have a set of Molecules
that shall be reconfigured
Altogether we need a certain set of Atoms to
realize all Molecules in this set (supremum)
Initially, some Atoms may already be
available in hardware and we only need to
reconfigure the remaining Atoms
Problem: The reconfiguration is rather slow
and we have to perform one reconfiguration
after the other
Question: in which sequence shall the
reconfigurations be performed?

After Selection we have a set of Molecules { }iS x

su p ()
x S

S xxx

su p ()a Ssu p ()su p (

M. Damschen, KIT, 2016 - 40 -

loaded
Atoms

fastest available
Molecule

1

2

3

4

5

6

3x

1x 2x

A0

A1

1 2 3

1

2

3

1x

2x

3x
2x 2x

3x

Upgrade candidates, i.e.
Molecules for the same SI

f

Note: typically the starting point (here:
(0,0)) and the ending point (here: (3,3)) vary
between different Selections/Schedules

M. Damschen, KIT, 2016 - 41 -

The Selection determines the
Molecules of the SIs in a certain
sequence, i.e. more relevant SIs are
considered first

Therefore, the Molecules of the first
selected SI should be reconfigured first

Drawbacks:
Other SIs may not achieve any hardware
support for a noticeable time and therefore
become the major bottleneck
When more Atom Containers are available
then bigger Molecules will be selected and
the other SIs are not accelerated for a
longer time (overall exec. might become
slower)

Upgrade Candi-
dates for SI2

Selected Molecule for SI2

Selected Mole-
cule for SI1

1 2s s
1s

2s
A0

A1

1 2 3

1

2

3

4

4 5

5

M. Damschen, KIT, 2016 - 42 -

The avoid the drawbacks from
FSFR we first schedule the
smallest Molecule from each SI
(in the Selection sequence)

Then, each SI has some degree of
hardware acceleration
Afterwards we follow the FSFR
schedule

Drawbacks:
Still, the focus is on one SI after the
other (first for avoiding cISA
execution, afterwards for upgrading)

Upgrade Candi-
dates for SI2

1 2s s

A0

A1

1 2 3

1

2

3

4

4 5

5

FSFR

Selected Mole-
cule for SI11s

Selected Molecule for SI22s

M. Damschen, KIT, 2016 - 43 -

At first, we follow the path from
ASF (until all cISA executions are
avoided)

Afterwards, we determine the
smallest step (i.e. number of
additionally required Atoms) to
upgrade an SI

Drawbacks
Still not (explicitly) considering how
often an SI is expected to execute
Also not considering how much
performance benefit a certain upgrade
may provide

Upgrade Candi-
dates for SI2

1 2s s

A0

A1

1 2 3

1

2

3

4

4 5

5

FSFR

ASF

Selected Mole-
cule for SI11s

Selected Molecule for SI22s

M. Damschen, KIT, 2016 - 44 -

For determining the next Molecule that shall be scheduled
consider the following parameters for a scheduling
candidate :

How often is the corresponding SI executed:
What is the performance improvement (in cycles per execution)
compared to the currently fastest available Molecule (i.e. after the
already scheduled reconfigurations are completed)
How many additional Atoms are required (Note: ‘additional’ should
never be zero; Molecules with 0 additional Atoms are removed)

Calculating the ‘efficiency’:

For determining the next Molecule that shall be sch

c
he

if

. () . -
() . () . ()

 i

c g e tS I g e tF a s te s tA v a ila b le M o le
c u le s a g e tL a te n c y c g e tL a te n c y

f
a c

ting the effic

M. Damschen, KIT, 2016 - 45 -

Calculating the ‘efficiency’ requires a division
Divisions require many cycles when executed in software or large
area when implemented in hardware

Optimized calculation:
The actual value of the ‘efficiency’ is not required, only the
Molecule with the best (biggest) efficiency needs to be determined
Thus, only comparison between two values is required

Store a·b separately to reuse it for the comparisons

Calculating the ‘efficiency’ requires a division

epar

((a·b)/c > (d·e)/f

(a·b)·f > (d·e)·c

M. Damschen, KIT, 2016 - 46 -

200

300

400

500
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
xe

cu
ti

on
 T

im
e

[M
ill

io
n

C
yc

le
s]

Amount of Reconfigurable Hardware [#AtomContainers]

First Select First Reconfigure (FSFR)

Amount of Reconfigurable Hardware [#Atom Containers]

Ex
ec

ut
io

n
Ti

m
e

[M
illi

on
 C

yc
le

s]

200

300

400

500
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
xe

cu
ti

on
 T

im
e

[M
ill

io
n

C
yc

le
s]

Amount of Reconfigurable Hardware [#AtomContainers]

First Select First Reconfigure (FSFR)

Avoid Software First (ASF)

Amount of Reconfigurable Hardware [#Atom Containers]

Ex
ec

ut
io

n
Ti

m
e

[M
illi

on
 C

yc
le

s]

200

300

400

500
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
xe

cu
ti

on
 T

im
e

[M
ill

io
n

C
yc

le
s]

Amount of Reconfigurable Hardware [#AtomContainers]

First Select First Reconfigure (FSFR)

Avoid Software First (ASF)

Smallest Job First (SJF)

Amount of Reconfigurable Hardware [#Atom Containers]

Ex
ec

ut
io

n
Ti

m
e

[M
illi

on
 C

yc
le

s]

200

300

400

500
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
xe

cu
ti

on
 T

im
e

[M
ill

io
n

C
yc

le
s]

Amount of Reconfigurable Hardware [#AtomContainers]

First Select First Reconfigure (FSFR)
Avoid Software First (ASF)
Smallest Job First (SJF)
Highest Efficiency First (HEF)

Amount of Reconfigurable Hardware [#Atom Containers]

Ex
ec

ut
io

n
Ti

m
e

[M
illi

on
 C

yc
le

s]

Amount of Reco

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 47 -

DCT Execution MC Execution SATD Execution SAD Execution
DCT Latency MC Latency SATD Latency SAD Latency

Li
ne

s:
 S

I L
at

en
cy

 [C
yc

le
s]

 (L
og

 S
ca

le
)

Execution Time [100K Cycles]

1
10

10

0
1,

00
0

10
,0

00

Ba
rs

: #
 o

f S
I E

xe
cu

tio
ns

 p
er

 1
00

K
Cy

cl
es

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0

Continuation of Latency lines for SAD
and SATD are omitted for clarity

0 2 4 6 8 10 12 14 16 18 20 22 24

M. Damschen, KIT, 2016 - 48 -

Decode Reconf.
Sequence

Prediction

Selection

Replacing

Core Pipeline
Status / Control

Execution
Control

Instruction

Run-time
System

Instruction
Memory

Monitoring

Reconfigurable HW

Details can
be found in
[BSH09]

M. Damschen, KIT, 2016 - 49 -

Whenever all Atom Containers in the reconfigurable fabric are
utilized and a new Atom shall be reconfigured (due to Selection
and Scheduling) then an existing Atom needs to be replaced
This Atom may be required again (as typically the different hot
spots of the application are executed in a loop)
We should avoid replacing those Atoms that are required soon
Optimal solution for memory pages (aka Bélády's replacement):
replace that page that is not required for the longest time

Drawback: future knowledge required
Actual Atom usage is hard to predict due to Atom sharing and as it
depends on the Selection
Even if future knowledge would be available, Bélády's replacement would
not be optimal for Atom replacement. Difference: memory pages are really
‘required’ and the system has to be stalled until they are fetched; Atoms
are not required, they just speed up the computation

M. Damschen, KIT, 2016 - 50 -

Policy Description Examined
Information

LRU Least Recently Used When was it
used? MRU Most Recently Used

LFU Least Frequently Used How often
was it used? MFU Most Frequently Used

FIFO First In First Out

When was
it reconfi-
gured?

LIFO Last In First Out

Second
Chance

/
Clock

Extension of FIFO: Each Atom in the queue
has a flag that is set when it is used. When an
Atom shall be replaced (according the FIFO
policy) but the flag is set, it gets a second
chance, i.e. its flag is cleared and it is moved
to the beginning of the FIFO queue (as if it
were new). ‘Clock’ is a different implemen-
tation of the same policy.

M. Damschen, KIT, 2016 - 51 -

Motion Estimation (ME)

• SAD: Sum of Absolute Differences
• SATD: Sum of Absolute (Hadamard-)

Transformed Differences

Encoding Engine (EE)

• DCT: Discrete Cosine Transformation
• HT: Hadamard Transformation
• Intra-Frame Prediction, Motion

Compensation, …

Loop
Filter
(LF)

~ 55% ~ 35%

Computational
Kernels

Typical Time Budget
(33 ms 30 fps)

SIs:

~ 10%

Critical
replacement

decision
point

Policy Replaced Atoms when prefetching for LF Demanded for SIs
LRU Parallel Difference Computation and Accumulation SAD, SATD
MRU Transformation SATD, DCT, HT

Note:
• Execution time of LF is rather short not all Atoms replaced
• ME and EE share Atoms (e.g. Hadamard Transformation for SATD and HT)
• It is crucial to avoid replacing the Atoms demanded by ME when prefetching for LF

M. Damschen, KIT, 2016 - 52 -

Atoms

SI

Molecules (0,0,0,0) 319 cycles
(0,0,1,0) 261 cycles
(0,0,1,1) 173 cycles
(0,1,1,1) 93 cycles
(1,1,1,1) 31 cycles
(1,2,2,2) 27 cycles
…

(0,0,0,0) 201 cycles
(0,0,1,0) 174 cycles
(0,0,1,1) 16 cycles
(0,0,2,2) 11 cycles
…

(0,0,0,0) 67 cycles
(0,0,0,1) 2 cycles

demands
(multiple)

has
(multiple)

QSubSAV: Sum of
Absolute Values

Byte
Packing

Hadamard
Transformation

SATD: Sum of
Absolute

Hadamard-Trans-
formed Differences

HT4x4: 4x4
Hadamard

Transformation

HT2x2: 2x2
Hadamard

Transformation

M. Damschen, KIT, 2016 - 53 -

Depending on the replaced Atoms, all SIs might be
affected

Some Atoms are critical for the performance and thus should not
be replaced

This is independent of history-based matters, e.g. ‘when’
they were reconfigured, ‘how often’ they were used etc.

(0,2,1,1)
SATD: 93 cycles

4x4 HT:16 cycles

2x2 HT: 2 cycles

(0,2,1,0)
SATD: 261 cycles
4x4 HT:174 cycles
2x2 HT: 67 cycles

(0,1,1,1)
SATD: 93 cycles
4x4 HT: 16 cycles
2x2 HT: 2 cycles

M. Damschen, KIT, 2016 - 54 -

Some Atoms are selected to implement SIs

Some Atoms are currently available

Some Atoms need to be reconfigured (prefetching selected them
but they are currently not available)

Some Atoms are replacement candidates (they are available but
prefetching did not select them)

Next: determine the Atom that leads to the minimum
performance degradation, accumulated over all SIs: MinDeg

0 1: , . . . , ns s s

0 1: , . . . , na a a
y

s a

:c a s

M. Damschen, KIT, 2016 - 55 -

1,1,1,11, 2 , 0 ,11, 2 ,1, 0

0 ,1, 0 , 00 , 0 ,1, 00 , 0 , 0 ,1(0,0,0,0) 319 cycles
(0,0,1,0) 261 cycles
(0,0,1,1) 173 cycles
(0,1,1,1) 93 cycles
(1,1,1,1) 31 cycles
(1,2,2,2) 27 cycles
……

(0,0,0,0) 201 cycles
(0,0,1,0) 174 cycles
(0,0,1,1) 16 cycles
(0,0,2,2) 11 cycles
…

(0,0,0,0) 67 cycles
(0,0,0,1) 2 cycles

QSub SAV: Sum of
Absolute Values

Byte
Packing

Hadamard
Transformation

SATD: Sum of
Absolute

Hadamard-Trans-
formed Differences

HT4x4: 4x4
Hadamard

Transformation

HT2x2: 2x2
Hadamard

Transformation

Available
Atoms

Replacement
Candidates

Candidate:

Afterwards
available Atoms

: 1, 2 ,1,1a

: 0 , 2 ,1,1c

(0,0,0,1) 261+174+67=502 cycles
(0,0,1,0) 319+201+67=587 cycles
(0,1,0,0) 31+ 16+ 2= 49 cycles

M. Damschen, KIT, 2016 - 56 -

When a rather small
reconfigurable fabric is
available, then often all
Atoms need to be
replaced (minor impact
of replacement policy)
When a rather large
fabric is available, then
all ever-demanded
Atoms might fit to the
fabric at the same time
(minor impact of
replacement function)
In between, MinDeg
provides the best
performance

0

10

20

30

40

50

60

70

6 8 10 12 14 16 18 20 22 24

Number of Atom Containers

Reconfiguration Bandwidth: 10 MB/s

Here, MinDeg achieves up to
1.61x speedup in comparison to

the closest competitor

Ex
ec

ut
io

n
Ti

m
e

[M
ill

io
n

Cy
cl

es
]

LIFO
LFU
LRU
2nd Chance

FIFO
MFU
MRU
Our MinDeg

M. Damschen, KIT, 2016 - 57 -

Decode Reconf.
Sequence

Prediction

Selection

Replacing

Core Pipeline
Status / Control

Execution
Control

Instruction

Run-time
System

Instruction
Memory

Monitoring

Reconfigurable HW

Details can
be found in
[BSH08a]

M. Damschen, KIT, 2016 - 58 -

M U X

Local
storage

Loc
stora

M
U
X

M UM U X

Local
storage

Local
storage

M
U
X

MUX
MUX

M
U
X

M U X

D

en
Q

D

en
Q

Bus Connector Bus Co

Atom
Container

scaled
down MMMMM UUUUU XXXXX MMMMM UUUUUwnwoow

AAtom-internal
computation

Bus Co
Segmented Bus
to connect to

neighbored Bus
Connector

LLLLLLLLLooooccccaaaallllllll
storage

LLLLLLLLooooooccccc
stora

Container Bus Macro
Local Local

MM
U
X

Local Storage
 result may be

read in next cycle

B C t B C
SSSSSSSSSSSSSSeeeeeeeeegggggggggmmmmmmmmmmeeeeeeeeennnnnnntttttttttteeeeeeeeeddddddddd Bu

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 59 -
M U X

Local
storage

Local
storage

M
U
X

MUX
MUX

M
U
X

M U X

D

en
Q

D

en
QM U X

Local
storage

Local
storage

M
U
X

MUX
MUX

M
U
X

M U X

D

en
Q

D

en
QM U X

Local
storage

Local
storage

M
U
X

MUX
MUX

M
U
X

M U X

D

en
Q

D

en
Q

Bus Connector 1Bus Connector 0 Bus Connector 2

Atom
Container 0

Atom
Container 2

Atom
Container 1

scaled
down

scaled
down

scaled
down

M. Damschen, KIT, 2016 - 60 -

Memory Controller

…

…

At
om

Co

nt
ai

ne
r

Inter-
con-
nect

Legend:
AGU:Address Generation Unit
LSU: Load/Store Unit

AG
U

 0

Inter-
con-
nect

LS
U

 0

Inter-
con-
nect

AG
U

 1
Inter-
con-
nect

Re
pa

ck

Inter-
con-
nect

AG
U

 2

Inter-
con-
nect

LS
U

 1

Inter-
con-
nect

AG
U

 3

Inter-
con-
nect

Re
pa

ck

Inter-
con-
nect

In addition to the reconfigurable Atom Containers, there are
several non-reconfigurable components connected to the bus

Load/Store Units (LSU), Address Generation Units (AGU), and Repack (Byte-
wise rearrangement of data)

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 61 -

AGU initialization
Baseaddress, Stride, Span,
Skip
Based on parameters of SI
(constants or from register
file)

4 AGUs can be used to
describe 4 different
memory streams

e.g. reading from two different
arrays and writing to two
different arrays

Each AGU pre-computes
the ‘next’ and the ‘next
next’ address

required to feed both LSUs at
the same time (e.g. using both
LSUs to read only one memory
stream)

Base Address

… …

2-D Array of data

2-D Sub-array of
demanded data

Representation of
data in memory

stride=1

span=3

skip=6

… …

stride=8

skip=-15span=3

Alternative: process the data vertical first

M. Damschen, KIT, 2016 - 62 -

Xilinx Virtex-4 LX 160 on Silica/Avnet Board
Audio/Video Module, CF-Card, Touch-Screen LCD
SDRAM, DDR-DRAM, SRAM, Reconfiguration EEPROM

M. Damschen, KIT, 2016 - 63 -

Periphery IP-Core for
Video-In and Video-Out.

Bus Connectors and
static Repack Atoms

Leon2
core

Atom Containers

I2C Peri-
phery

ICAP
Controller

Memory
Controller

MicroBlaze (for run-time
system) and Peripherals

LSU 1
LSU 0

AGUsBus
Macros

M. Damschen, KIT, 2016 - 64 -

M. Damschen, KIT, 2016 - 65 -
src: [BSH08c]

Ex
ec

ut
io

n
Ti

m
e

[M
ill

io
n

Cy
cl

es
]

Available Hardware [Atom Containers]

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ASIP Execution Time
RISPP Execution Time

M. Damschen, KIT, 2016 - 66 -
src: [BSKH08]

Ba
rs

: E
xe

cu
tio

n
Ti

m
e

[M
ill

io
n

Cy
cl

es
]

Available Reconfigurable Fabric [Atom Containers]

Li
ne

: S
pe

ed
up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

500

1,000

1,500

2,000

2,500

3,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

MOLEN

RISPP

Speedup of RISPP in
Comparison to Molen

M. Damschen, KIT, 2016 - 67 -

Application Speedup compared to Leon-only
Depending on number of available Atom Containers (in
simulation up to 20)

Min Avg Max

H.264 Video Encoder 1.11x 15.80x 22.21x

SUSAN Image Processing 1.22x 14.48x 15.99x

SHA 6.10x 6.44x 6.45x

ADPCM Encoder 1.17x 5.00x 5.16x

JPEG Decoder 1.23x 3.31x 3.79x

M. Damschen, KIT, 2016 - 68 -

Novel hierarchical Special Instruction composition,
enabling different performance-area trade-offs
RISPP provides very high adaptivity that is demanded for
changing control flow (e.g. depending on input data)
Solved the reconfiguration overhead problem by upgrading
the SIs
Evaluated using simulations and FPGA-based prototype
Conservative Comparison with state-of-the-art

Comparison with ASIP: up to 3.06x faster
Comparison with Molen: up to 2.38x faster
Comparison with Proteus: up to 7.19x faster
Compared to Leon 2 GPP: up to 26.6x faster

- 69 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

M. Damschen, KIT, 2016 - 70 -

Fine-grained loosely-coupled Coprocessor
No compiler required; works on standard
binaries
Detects application hot spots during runtime
Re-implements hot spots as Special
Instructions

 Online Synthesis

Developed special FPGA fabric and special
place & route tools for online synthesis

M. Damschen, KIT, 2016 - 71 -
src: [LSV06]

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 72 -

Typically, the critical kernels correspond to
frequently executed (inner) loops
Characteristic of inner loops: ends with a short
backward branch (sbb) targeting the beginning of
the loop

‘short’ means: small offset compared to current
instruction memory address

Generally unknown how many different inner
loops exist

 use a Cache architecture to track the most important
ones (i.e. those with the highest execution frequency)

M. Damschen, KIT, 2016 - 73 -

On a miss in that cache (currently unknown sbb
needs to be stored) replace the least frequently
used sbb (loss of accuracy)
On overflow in any counter halve all values (shift)

Emphasizes on recent sbb activities
Loss of accuracy; but critical kernels still can be detected
Halving is done
as a feature of
the cache either
parallel(area) or
sequential (la-
tency overhead)

src: [GV03]

M. Damschen, KIT, 2016 - 74 -

The Cache Controller can detect sbb instructions automa-
tically by partially decoding the executed instruction
Non-intrusive System (P not modified)

Important for real-time systems where changes in execution
behavior could significantly affect the guarantees
Additionally minimizes the impact on current tool chains, e.g.
avoids special compilers or binary modification tools

Extension: Coalescing
When the inner loop executes several times, the cache controller in
the online monitoring is very active in reading, incrementing,
writing the cache high power consumption
Instead: count all executions of one inner loop separately and
whenever another loop executes, then update the cache once

Th C h C ll d bb i i

M. Damschen, KIT, 2016 - 75 -

CChallenges: The online synthesis (CAD tool) needs to execute
online while the user application is running

Typically CAD tools executes offline on a powerful workstation
Demanding high memory (GB) and computational resources (minutes
to hours to implement accelerators)

Simplification: Warp targets seldom-changing, long-running
applications

It may be acceptable to spend seconds to minutes for online synthesis
after the application started (once!), if it runs faster afterwards
Limits the adaptivity during application execution while maintaining a
high flexibility to accelerate any type of application

But: memory problem remains (time is available if you are
willing to wait; gigabytes of memory are not)

M. Damschen, KIT, 2016 - 76 -

Simplified FPGA
Smaller LUTs (3-input LUTs; state-of-the-art FPGAs have
4-6 input LUTs) simplified Mapping and Placement
Less LUTs per CLB simplified Mapping and Placement
Fixed routing inside a CLB simplified Placement and
Routing
Simplified Switching Matrices (less connections per
Switching Matrix and no connection to distant Switching
Matrices) simplified Placement and Routing

Simplified algorithms
Nearly all algorithms (Mapping, Placement, and Routing) are
greedy heuristics that do not achieve the quality (e.g. area
and latency) of state-of-the-art algorithms

Together: Trading-off quality vs. runtime overhead

Si lifi d FPGA

M. Damschen, KIT, 2016 - 77 -

Contains several hard-wired elements in addition
to the actual FPGA

Access to memory via Data Address Generator (DADG)
Loop Control Hardware (LCH)
Input/Output registers
Dedicated Multiply
Accumulate unit (MAC)

The core pipeline is
stalled during SI
execution

No cache coherency/
consistency issues
Not really co-processor

src: [LSV06]

M. Damschen, KIT, 2016 - 78 -
src: [LVT05]

Simple Configurable Logic Fabric
CLBs are surrounded by Switching Matrices (SMs)
Each CLB connected to a single SM
SMs are intercon-
nected to nearest
neighbors (short
channels) and to
second nearest
neighbors (long
channels; dashed
lines) in horizontal
and vertical direction

M. Damschen, KIT, 2016 - 79 -

CLB contains two 3-input/2-output LUTs with
optional registers at the outputs

Provides a trade-off
between area and delay

Simple and regular
structure simplifies
mapping and
placement

src: [LVT05]

M. Damschen, KIT, 2016 - 80 -
src: [LVT05]

4 short channels and 4 long channels (L) per direction
A channel i can only connect
to the same channel i at one
of the 3 other directions
(using the diamonds
as connectors)
Additionally the short
and the long channels
of the same channel
number i can be con-
nected (using the circles)
Simplifies the routing

M. Damschen, KIT, 2016 - 81 -

DDecompilation: converts binary
into a high-level representation
(e.g. control/data-flow graph)
Partitioning: selecting critical
kernels
High-level synthesis: create
netlist (Boolean expressions)
Low-level synthesis (FPGA
compilation): FPGA specific place
and route
Binary updater: Actually use the
new hardware

src: [LSV06]

M. Damschen, KIT, 2016 - 82 -
src: [LSV06]

Problem: application binary is not aware
of the Special Instruction (due to online
synthesis)
But: old code is no longer required

 may be overwritten
Solution:
1. Replace first instruction of old code with a

jump to a new hardware initialization
handler

2. This handler prepares & calls the hardware
of the Special Instruction and stalls the CPU
pipeline

3. When the Special Instruction completes,
the handler jumps to the instruction that
follows the last instruction of the old
code

M. Damschen, KIT, 2016 - 83 -
src: [LSV06]

Logic Synthesis: simplified logic minimizer
Technology Mapping: represent logic
as FPGA-specific LUTs and pack
multiple LUTs into CLBs
Placement: Bind the created
CLB-nodes (of the graph/
netlist) to actual CLBs on
the FPGA such that com-
munication partners are
placed near to each other
Routing: Connect communication partners

M. Damschen, KIT, 2016 - 84 -
src: [LVT05]

Simplified routing resource
graph

Goal: saving memory
Two connection types for long
and short routing channels
Connections annotated with costs

Top-down approach: greedy
assignment of edges to
connections

Connections contain the actual
routing channels
The first step does not assign
edges to channels but only
counts whether sufficient
channels would be available
Adjust the routing cost for
overutilized connections

M. Damschen, KIT, 2016 - 85 -
src: [LVT05]

Second step: detailed routing,
i.e. assigning edges to
channels
Based on a conflict graph

Two edges of the routing graph
conflict when both routes pass
through the same switching
matrix
The routes (edges) in the routing
graph become nodes in the
conflict graph that are connected
if they have a conflict

Solved by graph coloring
Ensuring that two connected
nodes have different colors
(corresponds to different
channel assignments)

M. Damschen, KIT, 2016 - 86 -

Comparing
scalability with
a standard
router (VPR) in
normal mode
and in fast
mode

Executed on
a 1.6 GHz
Pentium

Routing diffe-
rent algorithms
for a 100x100
CLB array

Note: low array
utilization!

src: [LVT05]

M. Damschen, KIT, 2016 - 87 -

Significantly reduced memory requirements (at most 8 MB;
allows for execution on embedded CPUs)
Slower critical path (30%)

Not clear, how it would perform for higher FPGA utilization

src: [LVT05]

M. Damschen, KIT, 2016 - 88 -

No effort for Application developers
Works on existing application binaries

High speedup possible for small kernels (after online synthesis is
completed)
But: some applications are hard to optimize

Code is not restructured by Warp tools to separate between HW-accelerated parts and
software parts
Interface must be derived automatically

Optimization takes rather long due to online synthesis
From seconds to minutes for the router running on a 1.6 GHz Pentium and
correspondingly longer on an embedded ARM (i.e. the actual target on which they
wanted to execute their online synthesis)

Altogether: interesting approach that demonstrates high flexibility
(targeting different applications but not within an application or across
multiple applications) and that provides a new trade-off between
flexibility, programmer/compiler effort, and efficiency

- 89 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

M. Damschen, KIT, 2016 - 90 -

Tightly-coupled coarse-grained architecture

No compiler required; works on standard
binaries

On-the-fly online-synthesis
i.e. no lengthy synthesis algorithms
creation of the Special Instructions during
execution of the original instructions

Caching of the created SIs

M. Damschen, KIT, 2016 - 91 -

Starts on the first instruction after a branch
Stops when it detects an unsupported instruction or
another branch (unless ‘speculative execution’ is
supported, i.e. speculating on the branch)
In between: each executed instruction is placed on
the reconfigurable array

Creating a configuration on-the-fly and extending it by
each executed assembler instruction
Using several temporary tables to manage utilized
resources, data dependencies etc.

If more than three instructions were found, the
created configuration is cached

M. Damschen, KIT, 2016 - 92 -

First time a hot spot (dark grey) is executed, it is
translated into a configuration, i.e. SI

It is not necessarily known, that it is a hot spot; but ‘hotter’ spots
have a higher chance to remain in the cache

For subsequent executions, the cached configuration is
loaded and exe-
cuted

src: [BRGC08]

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 93 -
src: [RBC08]

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 94 -

The array is composed of different building blocks
ALUs, Load/Store Units, Multipliers

Lines of these building blocks are connected to
subsequent lines, using multiplexers

Note: the previous example does not necessarily have 18
physical lines; it rather has 3 physical lines; Line 4 reuses
the hardware of Line 1
But: configuration memory for all lines is needed to switch
the configuration while the Special Instruction executes

At design time, different (application specific)
reconfigurable fabrics can be composed

The array is composed of different building blocks

M. Damschen, KIT, 2016 - 95 -

Creating the configuration step-by-step

Considering dependencies

dst-
reg

src: [RBC08]

M. Damschen, KIT, 2016 - 96 - src: [BRGC08] - 96 -

Average Speedup for different Configurations of
the reconfigurable array and dif-
ferent Cache sizes for
the configuration data
“Ideal” assumes infinite
hardware
“Specula-
tion” al-
lows spe-
culative
execution

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 97 -

Efficient way to support online synthesis on-
the-fly
Moderate speedups

Also depends on how the compiler schedules the
code
Limited room for optimizations when creating a
configuration on-the-fly

Application-specific reconfigurable fabrics
provide higher speedup for the targeted
application at the cost of reduced generality

M. Damschen, KIT, 2016 - 98 -

[BSH08a] L. Bauer, M. Shafique, J. Henkel: “A Computation- and Communication-
Infrastructure for Modular Special Instructions in a Dynamically Reconfigurable
Processor”, International Conference on Field Programmable Logic and
Applications (FPL), pp. 203-208, 2008.

[BSKH08] L. Bauer, M. Shafique, S. Kreutz, J. Henkel: “Run-time System for an
Extensible Embedded Processor with Dynamic Instruction Set”, Design Automation
and Test in Europe Conference (DATE), pp. 752-757, 2008.

[BSH08b] L. Bauer, M. Shafique, J. Henkel: “Run-time Instruction Set Selection in a
Transmutable Embedded Processor”, Design Automation Conference (DAC), pp.
56-61, 2008.

[BSH09] L. Bauer, M. Shafique, J. Henkel: “MinDeg: A Performance-guided
Replacement Policy for Run-time Reconfigurable Accelerators”, Int’l Conference on
Hardware-Software Codesign and System Synthesis (CODES+ISSS), pp. 335-342,
2009.

[BSH08c] L. Bauer, M. Shafique, J. Henkel: “Efficient Resource Utilization for an
Extensible Processor through Dynamic Instruction Set Adaptation”, IEEE
Transaction on Very Large Scale Integration (TVLSI) , vol. 16, no. 10, pp. 1295-
1308, 2008.

M. Damschen, KIT, 2016 - 99 -

[LSV06] R. Lysecky, G. Stitt, F. Vahid: “Warp Processors”, ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 11, no. 3, pp. 659-681,
2006.

[GV03] A. Gordon-Ross, F. Vahid: “Frequent Loop Detection Using Efficient Non-
Intrusive On-Chip Hardware”, International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), pp. 117-124, 2003.

[LVT05] R. Lysecky, F. Vahid, S. X.-D. Tan: “A Study of the Scalability of On-Chip
Routing for Just-in-Time FPGA compilation”, IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 57-62, 2005.

[BRGC08] A.C.S. Beck, M.B. Rutzig, G. Gaydadjiev, L. Carro: “Transparent
reconfigurable acceleration for heterogeneous embedded applications”, Design
Automation and Test in Europe Conference (DATE), pp. 1208–1213, 2008.

[RBC08] M.B. Rutzig, A.C.S. Beck, L. Carro: “Balancing reconfigurable data path
resources according to application requirements”, International Parallel and
Distributed Processing Symposium, pp. 1-8, 2008.

- 100 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

(not relevant for exam)

M. Damschen, KIT, 2016 - 101 -

src: C. Bobda et al. “DyNoC: A Dynamic Infrastructure for
Communication in Dynamically Reconfigurable Devices”, IEEE
Design & Test of Computers, 22(5), pp. 443-451, 2005.

M. Damschen, KIT, 2016 - 102 -

src: T. Pionteck et al. “A Design Technique for Adapting
Number and Boundaries of Reconfigurable Modules at
Runtime”, Int’l Journal of Reconfigurable Computing, 2009.

M. Damschen, KIT, 2016 - 103 -

src: T. Pionteck et al. “A Design Technique for Adapting
Number and Boundaries of Reconfigurable Modules at
Runtime”, Int’l Journal of Reconfigurable Computing, 2009.

M. Damschen, KIT, 2016 - 104 -

Application I -
Domain 1

Application II -
Domain 1

RISC1 CI 21

CI 11

RISC2

CI12

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009. and Test i

L. Bauer, KIT, 2015

Pr
oc

es
so

rC
on

tr
ol

U
ni

t
R

ec
on

fig
ur

at
io

n
C

on
tro

l,
R

es
so

ur
ce

A
llo

ca
tio

n,
E

le
m

en
ts

’ A
ct

iv
e

S
ta

te
 M

an
ag

em
en

t

M
ai

n
M

em
or

y

B
an

ke
d

D
at

a
C

ac
he

S
ub

sy
st

em
C

on
te

xt
M

em
or

y
C

ac
he

S
ub

sy
st

em

Instruction Fetch & Align Tiles

Instruction Analyze & Dispatch Tiles

Multi Grained EDPE Array

Lo
ad

-S
to

re
O

pc
od

e
H

an
dl

in
g

Instruction Cache Tiles

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

In
st

ru
ct

io
n

P
re

de
co

de

linCGFGCG

FG-EDPEs are FPGA-like
reconfigurable fabrics,

optimized for bit/byte level
operations, state machines

etc.

2

on

es

tch

EDPE EDPE EDPE

CG-EDPEs are ALU-like recon-
figurable fabrics, optimized for
word/sub-word level operations

M. Damschen, KIT, 2016 - 105 -

Application I -
Domain 1

Application II -
Domain 1

CI 21

CI 11

RISC2

CI12

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

Pr
oc

es
so

rC
on

tr
ol

U
ni

t
R

ec
on

fig
ur

at
io

n
C

on
tro

l,
R

es
so

ur
ce

A
llo

ca
tio

n,
E

le
m

en
ts

’ A
ct

iv
e

S
ta

te
 M

an
ag

em
en

t

M
ai

n
M

em
or

y

B
an

ke
d

D
at

a
C

ac
he

S
ub

sy
st

em
C

on
te

xt
M

em
or

y
C

ac
he

S
ub

sy
st

em

Instruction Fetch & Align Tiles

Instruction Analyze & Dispatch Tiles

Multi Grained EDPE Array

Lo
ad

-S
to

re
O

pc
od

e
H

an
dl

in
g

Instruction Cache Tiles

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

In
st

ru
ct

io
n

P
re

de
co

de

h

xt Sre tM S
ue

O

Instruction Cache
Instruction Fetch & Align

Cache access, extraction of
the actual instruction packets

Instr. Analyze & Dispatch
Extraction of the individual
operations out of an instruction
packet
Dispatching of operations
to EDPEs
Flow-Control Handling of
Interrupts, Exceptions etc.

nsInRISC1

M. Damschen, KIT, 2016 - 106 -

Pr
oc

es
so

rC
on

tr
ol

U
ni

t
R

ec
on

fig
ur

at
io

n
C

on
tro

l,
R

es
so

ur
ce

A
llo

ca
tio

n,
E

le
m

en
ts

’ A
ct

iv
e

S
ta

te
 M

an
ag

em
en

t

M
ai

n
M

em
or

y

B
an

ke
d

D
at

a
C

ac
he

S
ub

sy
st

em
C

on
te

xt
M

em
or

y
C

ac
he

S
ub

sy
st

em

Instruction Fetch & Align Tiles

Instruction Analyze & Dispatch Tiles

Multi Grained EDPE Array

Lo
ad

-S
to

re
O

pc
od

e
H

an
dl

in
g

Instruction Cache Tiles

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

In
st

ru
ct

io
n

P
re

de
co

de

Application I -
Domain 1

Instructio

Application II -
Domain 1

&&h &&RISC1

D
CI 21

CG
ED

E

FG
EDPE

PE

CI 11

lliiggg

Instructiooonn AAnnaallyyzzee && DD

R AAll

t ti A l &

R
RISC2

CG
DPE

FG
DPE

ED E

C
ED1

CI12

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

M. Damschen, KIT, 2016 - 107 -

Application -
Domain 2

Pr
oc

es
so

rC
on

tr
ol

U
ni

t
R

ec
on

fig
ur

at
io

n
C

on
tro

l,
R

es
so

ur
ce

A
llo

ca
tio

n,
E

le
m

en
ts

’ A
ct

iv
e

S
ta

te
 M

an
ag

em
en

t

M
ai

n
M

em
or

y

B
an

ke
d

D
at

a
C

ac
he

S
ub

sy
st

em
C

on
te

xt
M

em
or

y
C

ac
he

S
ub

sy
st

em

Instruction Fetch & Align Tiles

Instruction Analyze & Dispatch Tiles

Multi Grained EDPE Array

Lo
ad

-S
to

re
O

pc
od

e
H

an
dl

in
g

Instruction Cache Tiles

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

In
st

ru
ct

io
n

P
re

de
co

de

es

pppat VLIW RISC

CG
EDPE

CG
DPE

GCG
EDPE

E

CG
EDPEE PE

CG
EDPE

CI m

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

&&&h &&RISC1

D
CI 21

CG
ED

E

FG
EDPE

PE

CI 11

llliiiggg

Instructiooonn AAnnaallyyzzzzee && DD

R AAAlll

t ti A l &

R
RISC2

CG
DPE

FG
DPE

ED E

C
ED1

CI12

M. Damschen, KIT, 2016 - 108 -

Application -
Domain 2

Pr
oc

es
so

rC
on

tr
ol

U
ni

t
R

ec
on

fig
ur

at
io

n
C

on
tro

l,
R

es
so

ur
ce

A
llo

ca
tio

n,
E

le
m

en
ts

’ A
ct

iv
e

S
ta

te
 M

an
ag

em
en

t

M
ai

n
M

em
or

y

B
an

ke
d

D
at

a
C

ac
he

S
ub

sy
st

em
C

on
te

xt
M

em
or

y
C

ac
he

S
ub

sy
st

em

Instruction Fetch & Align Tiles

Instruction Analyze & Dispatch Tiles

Multi Grained EDPE Array

Lo
ad

-S
to

re
O

pc
od

e
H

an
dl

in
g

Instruction Cache Tiles

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

In
st

ru
ct

io
n

P
re

de
co

de

Instruction Cache
Instruction Fetch & Align

Cache access, extraction of
the actual instruction packets

Instr. Analyze & Dispatch
Extraction of the individual
operations out of an instruction
packet
Dispatching of operations
to EDPEs
Flow-Control Handling of
Interrupts, Exceptions etc.

Pr
oc

es
so

rC
on

tr
ol

U
ni

t
R

ec
on

fig
uurr

at
io

n
C

on
tro

l,
R

es
so

ur
ce

A
llo

ca
tio

n,
E

le
m

en
ts

’A
ct

iv
e

S
ta

te
M

an
ag

em
en

t

M
ai

n
M

em
or

y

C
on

te
x

C
ac

he
S

Instruction Fetch &&&& AAAllliiigggnn TTTiles

Instructiooonn AAnnaallyyzzzzee && DDispppatch

Multi Graained EDPPE Arraay

Lo
ad

-SS
ttoo

rr

Instruction Cachee TTTTiles

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

CG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

FG
EDPE

CG
EDPE

FG
EDPE

CG
EDPE

CG
EDPE

CG
EDPPEE

FG
EDPE

CCGG
EEDPE

CG
EDPE

FG
EDPE

h

xt Srree tM S
uee

OO

Instruction Cachee
Instruction FFeettcchh && AAlign

Cache aacccceessss,, eexxtraaction of
the aaccttuall iinsttruction packets

Innssttrr.. AAnnaallyyze & Dispatch
EExxttrraction of the individual
ooperations out of an instruction
packet
Dispatching of operations
to EDPEs
Flow-Control Handling of
Interrupts, Exceptions etc.

Hypermorphism:
Dynamically combining the

reconfigurable modules to realize
different ISAs as well as Custom

Instructions (CIs) upon application
requirements

KArlsruhe’s Hypermorphic
Reconfigurable Instruction-

Set Multigrained Array

src: R. Koenig et al. “KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture”, Design Automation
and Test in Europe Conference (DATE), pp. 819-824, 2009.

M. Damschen, KIT, 2016 - 109 -

CPU

CPU

Memory

TCPA

NA

Memory
NA

emoryI/O

CPU

i-Core

CPU CPU

CPU i-Core

NoC
Router

NoC
Router

NoC
Router

Memory

NA Memory

CCCCPPPPUUUU

CCCCPPPPUUUU

I/OOOOO

CCCCPPPUUU

ii--CCCCoooorree

Memory

A H B

L2 Cache
i-Core
TLM

Tile-local
Memory
(TLM)

DSU,
APB,

…
CPU1
I$ D$

SPM

i-Core
(CPU 0)

I$ D$

A H B

CiC

A H B

L2 Cache

Tile-local
Memory
(TLM)

DSU,
APB,

…

A H B

CiC

IM GC

AG

IM

GC

AG

IM GC

AG

IM

GC

AG

Co
nf

ig
. M

an
ag

er

I/O
 B

uf
fe

rs

I/O
 B

uf
fe

rs

I/O Buffers

I/O Buffers

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

CPU2
I$ D$

SPM
CPU3
I$ D$

SPM

CPU0
I$ D$

SPM

NNNoo
RRRRRRRRRRRRRRooooooooooooooouuuuuuuuuuuuutttttttttttttttttttttteeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrr

MMeeemm
NA

NoC
Memory

NoC
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeemmmoooooooooooooooo yooooooorrrrrrrrrrrryy

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 110 -

Dedicated fabric share per core, e.g.
[Watkins@MICRO10]
Reduced reconfigurable area and memory
bandwidth per core
PProblem: No adaption to dynamic
workloads

Shared reconfigurable fabric, e.g.
[Chen@DAC11]
Problem: Only 1 kernel can be run
on the fabric at any time

SRAM Scratchpad

Sy
st

em
 B

us

Core 0

Port

Accel.

Core 1

Port

Accel.

Core 2

Port

Accel.

Core 3

Port

Accel.

Sy
st

em
 B

us

Memory Port

Accelerators

SRAM Scratchpad

Core 0 Core 2

Core 3Core 1

Spatial Partitioning: Shared fabric:

Challenge: Combine advantages

COREFAB CO
RE FAB

M. Damschen, KIT, 2016 - 111 -

RPU
0

RPU
1

RPU
2

RPU
3

Memory Port

Sy
st

em
 B

us

Core 1

SRAM Scratchpad

Fabric Controller

SI micro-program
memory

Core 2

Core 3

Core 4

RPU RPU RPU

Memory Poooooooooooooooooooooooort
Reconfigurable

Processing
Units

M. Damschen, KIT, 2016 - 112 -

RPU
0

RPU
1

RPU
2

RPU
3

Memory Port

Sy
st

em
 B

us

SRAM Scratchpad

Fabric Controller

SI micro-program
memory

Merger

Remote-SI micro-
program memory

FAM

RPPPPPPPPPPPPPPPPPU
00000000000000000000

RPU
1

RPU
2

RPUUUUUUUUU
3

Fabric Controllerer FAM

Fabric Access
Manager

Remote Core

Remote Core

Remote Core

Primary Core

M. Damschen, KIT, 2016 - 113 -

Prerequisite:
Set of fabric rresources used by current primary and remote Op
must be ddisjoint

primary Op remote Op

MSB LSB

Fabric resource
in use by Op

merged Op

M. Damschen, KIT, 2016 - 114 -

Prerequisite:
Set of fabric rresources used by current primary and remote Op
must be ddisjoint

Conflict between Ops merging not possible

primary Op remote Op

Conflict between primary
and remote Op

M. Damschen, KIT, 2016 - 115 -

Primary SI Remote SI

Op for fabric configuration

1

2

3

4

5

1

2

3

4

Execution time for both SIs: 6 cycles

conflict detected
 stall remote

conflict detected
 stall remote

M. Damschen, KIT, 2016 - 116 -

1.3x faster on Remote
cores or 3.1x faster on
Primary core compared to
state-of-the-art
approaches
Overhead:

Size ~ 1/3 of size of LEON-3

COREFAB Spatial-Partitioning
[Watkins@MICRO10]

Reconf-Base Shared Fabric
[Chen@DAC11]

Component LUT BRAM
FAM 98 0
SI Merger 1133 0
Remote-SI mem 187 14
Total 1418 14

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 117 -

Demand: Many systems are multi-tasking systems anyway
Optimization: Performance loss until reconfiguration of
accelerators finished (range of milliseconds)
Example: H.264 video encoder processes 1 frame

Encoding Motion Estimation
Deblocking

Filter

Gray Bars: Cycle loss
due to unavailable
accelerators (com-
pared to optimistic
zero-cycle reconfi-
guration latency)

If it were zero, the
frame would have
been processed
1.35x faster

M. Damschen, KIT, 2016

M. Damschen, KIT, 2016 - 118 -

t=0ms 5ms 10ms 15ms 20ms 25ms

T1

T2

Task TT1: Deadline: 10ms
 Kernel 1: • Software: 10ms

 Kernel 2: • Software: 6ms

Task TT2: Deadline: 8ms
 Kernel 1: • Software: 5ms

Kernel 1 Kernel 2

M. Damschen, KIT, 2016 - 119 -

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms

T1

T2

Pi

Task TT1: Deadline: 10ms
 Kernel 1: • Software: 10ms
 • After 2ms reconf: 5ms (2x faster)
 • After 4ms reconf: 2.5ms (4x faster)
 Kernel 2: • Software: 6ms
 • After 3ms reconf: 1ms (6x faster)

Task TT2: Deadline: 8ms
 Kernel 1: • Software: 5ms

M. Damschen, KIT, 2016 - 120 -

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms

T1

T2

Pi

Task TT1: Deadline: 10ms
 Kernel 1: • Software: 10ms
 • After 2ms reconf: 5ms (2x faster)
 • After 4ms reconf: 2.5ms (4x faster)
 Kernel 2: • Software: 6ms
 • After 3ms reconf: 1ms (6x faster)

Task TT2: Deadline: 8ms
 Kernel 1: • Software: 5ms

M. Damschen, KIT, 2016 - 121 -

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms

T1

T2

Pi

Task TT1: Deadline: 10ms
 Kernel 1: • Software: 10ms
 • After 2ms reconf: 5ms (2x faster)
 • After 4ms reconf: 2.5ms (4x faster)
 Kernel 2: • Software: 6ms
 • After 3ms reconf: 1ms (6x faster)

Task TT2: Deadline: 8ms
 Kernel 1: • Software: 5ms

M. Damschen, KIT, 2016 - 122 -

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=25ms 30ms 35ms 40ms 45ms

T1

T2

Pi

Task TT1: Deadline: 10ms
 Kernel 1: • Software: 10ms
 • After 2ms reconf: 5ms (2x faster)
 • After 4ms reconf: 2.5ms (4x faster)
 Kernel 2: • Software: 6ms
 • After 3ms reconf: 1ms (6x faster)

Task TT2: Deadline: 8ms
 Kernel 1: • Software: 5ms

M. Damschen, KIT, 2016 - 123 -

Scheduler needs to consider that tasks have different
Performance Levels that change over time

Try to exploit high performance levels, i.e. schedule those tasks
Try to avoid low performance levels, i.e. do not schedule those
tasks

Keep the reconfiguration port busy
If a task that is known to use Special Instructions did not issue a
reconfiguration request (for the next kernel) yet, then schedule it
Reason: it will not increase its performance level until it at least
issues a reconfiguration request

Additionally: consider the soft deadlines of tasks
Even if a task has a low performance level, it might need to be
scheduled to meet its deadline

M. Damschen, KIT, 2016 - 124 -

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=0ms 5ms 10ms 15ms 20ms 25ms

T1

T2

2x 4x 2x 4x 4x

Pi

Task TT1: Deadline: 10ms
 Kernel 1: • Software: 10ms
 • After 2ms reconf: 5ms (2x faster)
 • After 4ms reconf: 2.5ms (4x faster)
 Kernel 2: • Software: 6ms
 • After 3ms reconf: 1ms (6x faster)

Task TT2: Deadline: 8ms
 Kernel 1: • Software: 5ms

M. Damschen, KIT, 2016 - 125 -

Co
re

 P
ip

el
in

e Reconfigurable
Containers

t=25ms 30ms 35ms 40ms 45ms

T1

T2

The other schedule finished here

Pi

Task TT1: Deadline: 10ms
 Kernel 1: • Software: 10ms
 • After 2ms reconf: 5ms (2x faster)
 • After 4ms reconf: 2.5ms (4x faster)
 Kernel 2: • Software: 6ms
 • After 3ms reconf: 1ms (6x faster)

Task TT2: Deadline: 8ms
 Kernel 1: • Software: 5ms

M. Damschen, KIT, 2016 - 126 -

To calculate the Performance Level [0,1] for Task T
that executes Kernel K at time t we consider:

Which accelerators are requested for Kernel K
How many accelerators are attained at time t

 Calculate the average latency of the Special Instructions
given the currently available accelerators compared to the
latency after all requested accelerators are available

S Is in v o k e d
 in K e rn e l

. . ()

. . ()

S Is in v o k e d, i f 0
 in K e rn e l S Is in v o k e d in K e rn e l

 1 , e ls e

S
K

S la te n c y T r e q A c c K

S la te n c y T a ttA c c t

S
KS K

M. Damschen, KIT, 2016 - 127 -

NNRQ: Not Released Queue – these tasks cannot be
scheduled, as the previous job (if any) has
completed and the next job is not released yet

LPQ: Low Performance Queue – tasks can be scheduled
but they would run at a reduced Performance Level
due to not yet reconfigured accelerators

FPQ: Full Performance Queue – these tasks can be
scheduled and all requested accelerators are
available

(Re-)assigning tasks to queues is managed
at context switch
when a reconfiguration completes
when a task requests different accelerators

M. Damschen, KIT, 2016 - 128 -

FPQ=

candidates
= LPQ

candidates =
FPQ {t LPQ
| t.slack < 0}

Start

candi-
dates

Calculate
Performance_level

Score =
Performance_level +

Relative_Slack

Remember candidate
with largest score

Schedule
task with
largest
scoreno

yes

done
candi-
dates

Calculate
Performance_level

Score =
Performance_level +

Relative_Slack

Remember candidate
with largest score

Schedule
task with
largest
score

nedo e

M. Damschen, KIT, 2016 - 129 -

Reconfigurable Fabric size [# RPUs]

0

200

400

600

800

1,000

1,200

1,400

RMS EDF RR PATSSy
st

em
 Ta

rd
in

es
s [

M
Cy

cle
s]

PPATS: Performance Aware Task
Scheduler

Def. System Tardiness: Sum of all times
that jobs finished too late
Outperforms the other scheduler in
nearly all cases
Only in rare cases slightly beaten by EDF
Sometimes RR is the closest competitor,
sometimes the worst performer
PATS is on average 1.92x, 1.29x and
1.14x faster than RMS, EDF, and RR,
respectively

MORP: Makespan Optimization for
Reconfigurable Processors

Def. Makespan: Time until all
concurrently started tasks of a task set
are completed
Hybrid task-scheduling and area-
allocation approach
Makespans are only 5.8% (mean) worse
than upper bound

M. Damschen, KIT, 2016 - 130 -
src: Convey Workshop 2010; http://www.conveycomputer.com/

M. Damschen, KIT, 2016 - 131 -
src: Convey Workshop 2010; http://www.conveycomputer.com/

M. Damschen, KIT, 2016

